Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.1.2.4
      1 /*	$NetBSD: kern_sleepq.c,v 1.1.2.4 2006/10/24 21:10:21 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include "opt_multiprocessor.h"
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.4 2006/10/24 21:10:21 ad Exp $");
     48 
     49 #include <sys/param.h>
     50 #include <sys/lock.h>
     51 #include <sys/kernel.h>
     52 #include <sys/pool.h>
     53 #include <sys/proc.h>
     54 #include <sys/resourcevar.h>
     55 #include <sys/sched.h>
     56 #include <sys/systm.h>
     57 #include <sys/sa.h>
     58 #include <sys/savar.h>
     59 #include <sys/sleepq.h>
     60 
     61 int	sleepq_sigtoerror(struct lwp *, int);
     62 void	sleepq_exit(sleepq_t *, struct lwp *);
     63 void	updatepri(struct lwp *);
     64 void	sa_awaken(struct lwp *);
     65 
     66 sleepq_t	sleeptab[SLEEPTAB_HASH_SIZE];
     67 #ifdef MULTIPROCESSOR
     68 kmutex_t	sleeptab_mutexes[SLEEPTAB_HASH_SIZE];
     69 #endif
     70 
     71 /*
     72  * sleeptab_init:
     73  *
     74  *	Initialize the general-purpose sleep queues.
     75  */
     76 void
     77 sleeptab_init(void)
     78 {
     79 	sleepq_t *sq;
     80 	int i;
     81 
     82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83 		sq = &sleeptab[i];
     84 #ifdef MULTIPROCESSOR
     85 		mutex_init(&sleeptab_mutexes[i], MUTEX_SPIN, IPL_SCHED);
     86 		sleepq_init(&sleeptab[i], &sleeptab_mutexes[i]);
     87 #else
     88 		sleepq_init(&sleeptab[i], &sched_mutex);
     89 #endif
     90 	}
     91 }
     92 
     93 /*
     94  * sleepq_init:
     95  *
     96  *	Prepare a sleep queue for use.
     97  */
     98 void
     99 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
    100 {
    101 
    102 	sq->sq_waiters = 0;
    103 	sq->sq_mutex = mtx;
    104 	TAILQ_INIT(&sq->sq_queue);
    105 }
    106 
    107 /*
    108  * sleepq_remove:
    109  *
    110  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    111  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    112  *	to bring the LWP into memory.
    113  */
    114 int
    115 sleepq_remove(sleepq_t *sq, struct lwp *l)
    116 {
    117 	struct cpu_info *ci;
    118 
    119 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    120 	LOCK_ASSERT(mutex_owned(&sched_mutex));
    121 	KASSERT(sq->sq_waiters > 0);
    122 
    123 	sq->sq_waiters--;
    124 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
    125 
    126 #ifdef DIAGNOSTIC
    127 	if (sq->sq_waiters == 0)
    128 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    129 	else
    130 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    131 #endif
    132 
    133 	l->l_wchan = NULL;
    134 	l->l_flag &= ~L_SINTR;
    135 
    136 	/*
    137 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    138 	 * holds it stopped set it running again.
    139 	 */
    140 	if (l->l_stat != LSSLEEP) {
    141 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    142 		return 0;
    143 	}
    144 
    145 	if (l->l_proc->p_sa)
    146 		sa_awaken(l);
    147 
    148 	lwp_setlock(l, &sched_mutex);
    149 
    150 	/*
    151 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    152 	 * about to call mi_switch(), in which case it will yield.
    153 	 */
    154 	if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
    155 		l->l_stat = LSONPROC;
    156 		l->l_slptime = 0;
    157 		return 0;
    158 	}
    159 
    160 	/*
    161 	 * Set it running.  We'll try to get the last CPU that ran
    162 	 * this LWP to pick it up again.
    163 	 */
    164 	l->l_stat = LSRUN;
    165 	if (l->l_slptime > 1)
    166 		updatepri(l);
    167 	l->l_slptime = 0;
    168 	if ((l->l_flag & L_INMEM) != 0) {
    169 		setrunqueue(l);
    170 		cpu_need_resched(l->l_cpu);
    171 		return 0;
    172 	}
    173 
    174 	return 1;
    175 }
    176 
    177 /*
    178  * sleepq_enter:
    179  *
    180  *	Enter an LWP into the sleep queue and prepare for sleep.  Any interlocking
    181  * 	step such as releasing a mutex or checking for signals may be safely done
    182  *	by the caller once on the sleep queue.
    183  */
    184 void
    185 sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
    186 	     int catch)
    187 {
    188 	struct lwp *l = curlwp;
    189 
    190 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    191 
    192 #ifdef KTRACE
    193 	if (KTRPOINT(p, KTR_CSW))
    194 		ktrcsw(l, 1, 0);
    195 #endif
    196 
    197 	sq->sq_waiters++;
    198 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepq);
    199 
    200 	/*
    201 	 * Acquire the per-LWP mutex.
    202 	 */
    203 	lwp_lock(l);
    204 
    205 	KASSERT(l->l_wchan == NULL);
    206 
    207 	l->l_wchan = wchan;
    208 	l->l_wmesg = wmesg;
    209 	l->l_slptime = 0;
    210 	l->l_priority = pri & PRIMASK;
    211 	l->l_flag &= ~L_CANCELLED;
    212 	if (catch)
    213 		l->l_flag |= L_SINTR;
    214 	if (l->l_stat == LSONPROC)
    215 		l->l_stat = LSSLEEP;
    216 	l->l_nvcsw++;
    217 
    218 	if (timo)
    219 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    220 
    221 	/*
    222 	 * The LWP is now on the sleep queue.  Release its old mutex and
    223 	 * lend it ours for the duration of the sleep.
    224 	 */
    225 	lwp_setlock_unlock(l, sq->sq_mutex);
    226 }
    227 
    228 /*
    229  * sleepq_exit:
    230  *
    231  *	Remove the current LWP from a sleep queue after the sleep has been
    232  *	interrupted.
    233  */
    234 void
    235 sleepq_exit(sleepq_t *sq, struct lwp *l)
    236 {
    237 
    238 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    239 	KASSERT(sq->sq_waiters > 0);
    240 	KASSERT(l->l_stat == LSSLEEP);
    241 
    242 	l->l_wchan = NULL;
    243 	l->l_slptime = 0;
    244 	l->l_flag &= ~L_SINTR;
    245 
    246 	sq->sq_waiters--;
    247 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepq);
    248 
    249 #ifdef DIAGNOSTIC
    250 	if (sq->sq_waiters == 0)
    251 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    252 	else
    253 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    254 #endif
    255 
    256 	l->l_stat = LSONPROC;
    257 
    258 	lwp_setlock_unlock(l, &sched_mutex);
    259 }
    260 
    261 /*
    262  * sleepq_block:
    263  *
    264  *	The calling LWP has been entered into the sleep queue by
    265  *	sleepq_enter(), and now wants to block.  sleepq_block() may return
    266  *	early under exceptional conditions, for example if the LWP's process
    267  *	is exiting.  sleepq_block() must be called if sleepq_enter() has
    268  *	been called.
    269  */
    270 int
    271 sleepq_block(sleepq_t *sq, int timo)
    272 {
    273 	int error, flag, expired, sig;
    274 	struct lwp *l = curlwp;
    275 	struct proc *p;
    276 
    277 	LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
    278 
    279 	flag = l->l_flag;
    280 	error = 0;
    281 
    282 	/*
    283 	 * If sleeping interruptably, check for pending signals, exits or
    284 	 * core dump events.
    285 	 */
    286 	if ((flag & L_SINTR) != 0) {
    287 		while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
    288 			lwp_unlock(l);
    289 			p = l->l_proc;
    290 			mutex_enter(&p->p_smutex);
    291 			if ((sig = issignal(l)) != 0)
    292 				error = sleepq_sigtoerror(l, sig);
    293 			mutex_exit(&p->p_smutex);
    294 			lwp_lock(l);
    295 		}
    296 
    297 		if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
    298 			error = EINTR;
    299 	}
    300 
    301 	if (error != 0 && l->l_stat == LSSLEEP)
    302 		sleepq_exit(sq, l);
    303 	else if (l->l_stat != LSONPROC) {
    304 		if ((flag & L_SA) != 0) {
    305 			sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
    306 			/* XXXAD verify sa_switch restores SPL. */
    307 		} else {
    308 			mi_switch(l, NULL);
    309 			l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    310 		}
    311 	}
    312 
    313 	KASSERT(l->l_wchan == NULL);
    314 
    315 	if (timo) {
    316 		/*
    317 		 * Even if the callout appears to have fired, we need to
    318 		 * stop it in order to synchronise with other CPUs.
    319 		 */
    320 		expired = callout_expired(&l->l_tsleep_ch);
    321 		callout_stop(&l->l_tsleep_ch);
    322 		if (expired && error == 0)
    323 			return EWOULDBLOCK;
    324 	}
    325 
    326 	if (error == 0 && (flag & L_SINTR) != 0) {
    327 		if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
    328 			error = EINTR;
    329 		else if ((l->l_flag & L_PENDSIG) != 0) {
    330 			p = l->l_proc;
    331 			mutex_enter(&p->p_smutex);
    332 			if ((sig = issignal(l)) != 0)
    333 				error = sleepq_sigtoerror(l, sig);
    334 			mutex_exit(&p->p_smutex);
    335 		}
    336 	}
    337 
    338 #ifdef KTRACE
    339 	if (KTRPOINT(p, KTR_CSW))
    340 		ktrcsw(l, 0, 0);
    341 #endif
    342 	return error;
    343 }
    344 
    345 /*
    346  * sleepq_wakeone:
    347  *
    348  *	Remove one LWP from the sleep queue and wake it.  We search among
    349  *	the higest priority LWPs waiting on a single wait channel, and pick
    350  *	the longest waiting one.
    351  */
    352 void
    353 sleepq_wakeone(sleepq_t *sq, wchan_t wchan)
    354 {
    355 	struct lwp *l, *bl;
    356 	int bpri, swapin;
    357 
    358 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    359 
    360 	swapin = 0;
    361 	bpri = MAXPRI;
    362 	bl = NULL;
    363 
    364 	TAILQ_FOREACH(l, &sq->sq_queue, l_sleepq) {
    365 		if (l->l_wchan != wchan || l->l_priority > bpri)
    366 			continue;
    367 		bl = l;
    368 		bpri = l->l_priority;
    369 	}
    370 
    371 	if (bl != NULL) {
    372 		sched_lock();
    373 		swapin = sleepq_remove(sq, bl);
    374 		sched_unlock();
    375 	}
    376 
    377 	mutex_exit(sq->sq_mutex);
    378 
    379 	if (swapin)
    380 		wakeup(&proc0);
    381 }
    382 
    383 /*
    384  * sleepq_wakeall:
    385  *
    386  *	Wake all LWPs blocked on a single wait channel.
    387  */
    388 void
    389 sleepq_wakeall(sleepq_t *sq, wchan_t wchan, u_int expected)
    390 {
    391 	struct lwp *l, *next;
    392 	int swapin = 0;
    393 
    394 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    395 
    396 	sched_lock();
    397 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    398 		next = TAILQ_NEXT(l, l_sleepq);
    399 		if (l->l_wchan != wchan)
    400 			continue;
    401 		swapin |= sleepq_remove(sq, l);
    402 		if (--expected == 0)
    403 			break;
    404 	}
    405 	sched_unlock();
    406 
    407 	LOCK_ASSERT(mutex_owned(sq->sq_mutex));
    408 	mutex_exit(sq->sq_mutex);
    409 
    410 	/*
    411 	 * If there are newly awakend threads that need to be swapped in,
    412 	 * then kick the swapper into action.
    413 	 */
    414 	if (swapin)
    415 		wakeup(&proc0);
    416 }
    417 
    418 /*
    419  * sleepq_unsleep:
    420  *
    421  *	Remove an LWP from its sleep queue and set it runnable again.
    422  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    423  *	always release it.
    424  */
    425 void
    426 sleepq_unsleep(struct lwp *l)
    427 {
    428 	sleepq_t *sq;
    429 	int swapin;
    430 
    431 	sq = &sleeptab[SLEEPTAB_HASH(l->l_wchan)];
    432 	KASSERT(l->l_wchan != NULL);
    433 	KASSERT(l->l_mutex == sq->sq_mutex);
    434 
    435 	sched_lock();
    436 	swapin = sleepq_remove(sq, l);
    437 	sched_unlock();
    438 
    439 	mutex_exit(sq->sq_mutex);
    440 
    441 	if (swapin)
    442 		wakeup(&proc0);
    443 }
    444 
    445 /*
    446  * sleepq_timeout:
    447  *
    448  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    449  *	sleep queue.
    450  */
    451 void
    452 sleepq_timeout(void *arg)
    453 {
    454 	struct lwp *l = arg;
    455 
    456 	/*
    457 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    458 	 * current mutex will also be the sleep queue mutex.
    459 	 */
    460 	lwp_lock(l);
    461 
    462 	if (l->l_wchan == NULL) {
    463 		/* Somebody beat us to it. */
    464 		lwp_unlock(l);
    465 		return;
    466 	}
    467 
    468 	sleepq_unsleep(arg);
    469 }
    470 
    471 /*
    472  * sleepq_sigtoerror:
    473  *
    474  *	Given a signal number, interpret and return an error code.
    475  */
    476 int
    477 sleepq_sigtoerror(struct lwp *l, int sig)
    478 {
    479 	struct proc *p = l->l_proc;
    480 	int error;
    481 
    482 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    483 
    484 	/*
    485 	 * If this sleep was canceled, don't let the syscall restart.
    486 	 */
    487 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    488 		error = EINTR;
    489 	else
    490 		error = ERESTART;
    491 
    492 	return error;
    493 }
    494 
    495 /*
    496  * sleepq_abort:
    497  *
    498  *	After a panic or during autoconfiguration, lower the interrupt
    499  *	priority level to give pending interrupts a chance to run, and
    500  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    501  *	always returns zero.
    502  */
    503 int
    504 sleepq_abort(kmutex_t *mtx, int unlock)
    505 {
    506 	extern int safepri;
    507 	int s;
    508 
    509 	s = splhigh();
    510 	splx(safepri);
    511 	splx(s);
    512 	if (mtx != NULL && unlock != 0)
    513 		mutex_exit(mtx);
    514 
    515 	return 0;
    516 }
    517