kern_sleepq.c revision 1.1.2.6 1 /* $NetBSD: kern_sleepq.c,v 1.1.2.6 2006/11/17 16:53:08 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.1.2.6 2006/11/17 16:53:08 ad Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sa.h>
60 #include <sys/savar.h>
61 #include <sys/sleepq.h>
62
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66
67 int sleepq_sigtoerror(struct lwp *, int);
68 void updatepri(struct lwp *);
69 void sa_awaken(struct lwp *);
70
71 /* General purpose sleep table, used by ltsleep() and condition variables. */
72 sleeptab_t sleeptab;
73
74 /*
75 * sleeptab_init:
76 *
77 * Initialize a sleep table.
78 */
79 void
80 sleeptab_init(sleeptab_t *st)
81 {
82 sleepq_t *sq;
83 int i;
84
85 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
86 sq = &st->st_queues[i];
87 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
88 mutex_init(&st->st_mutexes[i], MUTEX_SPIN, IPL_SCHED);
89 sleepq_init(sq, &st->st_mutexes[i]);
90 #else
91 sleepq_init(sq, &sched_mutex);
92 #endif
93 }
94 }
95
96 /*
97 * sleepq_init:
98 *
99 * Prepare a sleep queue for use.
100 */
101 void
102 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
103 {
104
105 sq->sq_waiters = 0;
106 sq->sq_mutex = mtx;
107 TAILQ_INIT(&sq->sq_queue);
108 }
109
110 /*
111 * sleepq_remove:
112 *
113 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
114 * the LWP is swapped out; if so the caller needs to awaken the swapper
115 * to bring the LWP into memory.
116 */
117 int
118 sleepq_remove(sleepq_t *sq, struct lwp *l)
119 {
120 struct cpu_info *ci;
121
122 LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
123 KASSERT(sq->sq_waiters > 0);
124 KASSERT(l->l_stat == LSSLEEP);
125
126 sq->sq_waiters--;
127 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
128
129 #ifdef DIAGNOSTIC
130 if (sq->sq_waiters == 0)
131 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
132 else
133 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
134 #endif
135
136 l->l_syncobj = &sched_syncobj;
137 l->l_wchan = NULL;
138 l->l_sleepq = NULL;
139 l->l_flag &= ~L_SINTR;
140
141 sched_lock(1);
142 lwp_setlock(l, &sched_mutex);
143
144 /*
145 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
146 * about to call mi_switch(), in which case it will yield.
147 */
148 if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
149 l->l_stat = LSONPROC;
150 l->l_slptime = 0;
151 sched_unlock(1);
152 return 0;
153 }
154
155 if (l->l_proc->p_sa)
156 sa_awaken(l);
157
158 /*
159 * Set it running. We'll try to get the last CPU that ran
160 * this LWP to pick it up again.
161 */
162 if (l->l_stat == LSSLEEP)
163 l->l_stat = LSRUN;
164 if (l->l_slptime > 1)
165 updatepri(l);
166 l->l_slptime = 0;
167 if ((l->l_flag & L_INMEM) != 0) {
168 setrunqueue(l);
169 if (l->l_priority < ci->ci_schedstate.spc_curpriority)
170 cpu_need_resched(ci);
171 sched_unlock(1);
172 return 0;
173 }
174
175 sched_unlock(1);
176 return 1;
177 }
178
179 /*
180 * sleepq_insert:
181 *
182 * Insert an LWP into the sleep queue, optionally sorting by priority.
183 */
184 static inline void
185 sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
186 {
187 struct lwp *l2, *l3 = NULL;
188
189 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
190 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
191 l3 = l2;
192 if (l2->l_priority > pri)
193 break;
194 }
195 }
196
197 if (l3 == NULL)
198 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
199 else
200 TAILQ_INSERT_BEFORE(l3, l, l_sleepchain);
201 }
202
203 /*
204 * sleepq_enter:
205 *
206 * Enter an LWP into the sleep queue and prepare for sleep. Any interlocking
207 * step such as releasing a mutex or checking for signals may be safely done
208 * by the caller once on the sleep queue.
209 */
210 void
211 sleepq_enter(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
212 int catch, syncobj_t *sobj)
213 {
214 struct lwp *l = curlwp;
215
216 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
217 KASSERT(l->l_stat == LSONPROC);
218 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
219
220 #ifdef KTRACE
221 if (KTRPOINT(l->l_proc, KTR_CSW))
222 ktrcsw(l, 1, 0);
223 #endif
224
225 sq->sq_waiters++;
226
227 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
228 /*
229 * Acquire the per-LWP mutex and sort it into the sleep queue. Once
230 * we have that lock, we can release the kernel lock. XXXSMP Not
231 * yet, since checking for signals may call pool_put(). Otherwise
232 * this is OK.
233 */
234 lwp_lock(l);
235
236 #ifdef notyet
237 l->l_biglocks = KERNEL_UNLOCK(0, l);
238 #endif
239 #endif
240
241 l->l_syncobj = sobj;
242 l->l_wchan = wchan;
243 l->l_sleepq = sq;
244 l->l_wmesg = wmesg;
245 l->l_slptime = 0;
246 l->l_priority = pri;
247 l->l_stat = LSSLEEP;
248 l->l_nvcsw++;
249
250 if (catch)
251 l->l_flag |= L_SINTR;
252
253 sleepq_insert(sq, l, pri, sobj);
254
255 if (timo)
256 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
257
258 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
259 /*
260 * The LWP is now on the sleep queue. Release its old mutex and
261 * lend it ours for the duration of the sleep.
262 */
263 lwp_unlock_to(l, sq->sq_mutex);
264 #endif
265 }
266
267 /*
268 * sleepq_block:
269 *
270 * The calling LWP has been entered into the sleep queue by
271 * sleepq_enter(), and now wants to block. sleepq_block() may return
272 * early under exceptional conditions, for example if the LWP's process
273 * is exiting. sleepq_block() must be called if sleepq_enter() has
274 * been called.
275 */
276 int
277 sleepq_block(sleepq_t *sq, int timo)
278 {
279 int error, flag, expired, sig;
280 struct lwp *l = curlwp;
281 struct proc *p;
282
283 LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
284
285 p = l->l_proc;
286 flag = l->l_flag;
287 error = 0;
288
289 /*
290 * If sleeping interruptably, check for pending signals, exits or
291 * core dump events.
292 */
293 if ((flag & L_SINTR) != 0) {
294 while ((l->l_flag & L_PENDSIG) != 0 && error == 0) {
295 lwp_unlock(l);
296 mutex_enter(&p->p_smutex);
297 if ((sig = issignal(l)) != 0)
298 error = sleepq_sigtoerror(l, sig);
299 mutex_exit(&p->p_smutex);
300 lwp_lock(l);
301 }
302
303 if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0) {
304 l->l_flag &= ~L_CANCELLED;
305 error = EINTR;
306 }
307
308 if (l->l_wchan != NULL) {
309 if (error != 0) {
310 KASSERT(l->l_stat == LSSLEEP);
311 sleepq_remove(sq, l);
312 mutex_exit(sq->sq_mutex);
313 }
314 } else {
315 KASSERT(l->l_stat == LSONPROC);
316 lwp_unlock(l);
317 }
318 }
319
320 if (l->l_stat == LSSLEEP) {
321 KASSERT(l->l_wchan != NULL);
322
323 if ((flag & L_SA) != 0)
324 sa_switch(l, sadata_upcall_alloc(0), SA_UPCALL_BLOCKED);
325 else {
326 mi_switch(l, NULL);
327 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
328 }
329 }
330
331 /* When we reach this point, the LWP is unlocked. */
332
333 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
334
335 if (timo) {
336 /*
337 * Even if the callout appears to have fired, we need to
338 * stop it in order to synchronise with other CPUs.
339 */
340 expired = callout_expired(&l->l_tsleep_ch);
341 callout_stop(&l->l_tsleep_ch);
342 if (expired && error == 0)
343 error = EWOULDBLOCK;
344 }
345
346 if (error == 0 && (flag & L_SINTR) != 0) {
347 if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
348 error = EINTR;
349 else if ((l->l_flag & L_PENDSIG) != 0) {
350 mutex_enter(&p->p_smutex);
351 if ((sig = issignal(l)) != 0)
352 error = sleepq_sigtoerror(l, sig);
353 mutex_exit(&p->p_smutex);
354 }
355 }
356
357 return error;
358 }
359
360 /*
361 * sleepq_unblock:
362 *
363 * After any intermediate step such as updating statistics, re-acquire
364 * the kernel lock and record the switch for ktrace. Note that we are
365 * no longer on the sleep queue at this point.
366 */
367 void
368 sleepq_unblock(void)
369 {
370 struct lwp *l = curlwp;
371
372 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
373 #ifdef notyet
374 /*
375 * Re-acquire the kernel lock. XXXSMP Let mi_switch() take care of
376 * it, until we can release the lock in sleepq_block().
377 */
378 KERNEL_LOCK(l->l_biglocks, l);
379 #endif
380 #endif
381
382 #ifdef KTRACE
383 if (KTRPOINT(l->l_proc, KTR_CSW))
384 ktrcsw(l, 0, 0);
385 #endif
386 }
387
388 /*
389 * sleepq_wake:
390 *
391 * Wake zero or more LWPs blocked on a single wait channel.
392 */
393 void
394 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
395 {
396 struct lwp *l, *next;
397 int swapin = 0;
398
399 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
400
401 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
402 KASSERT(l->l_sleepq == sq);
403 next = TAILQ_NEXT(l, l_sleepchain);
404 if (l->l_wchan != wchan)
405 continue;
406 swapin |= sleepq_remove(sq, l);
407 if (--expected == 0)
408 break;
409 }
410
411 LOCK_ASSERT(mutex_owned(sq->sq_mutex));
412 mutex_exit(sq->sq_mutex);
413
414 /*
415 * If there are newly awakend threads that need to be swapped in,
416 * then kick the swapper into action.
417 */
418 if (swapin)
419 wakeup(&proc0);
420 }
421
422 /*
423 * sleepq_unsleep:
424 *
425 * Remove an LWP from its sleep queue and set it runnable again.
426 * sleepq_unsleep() is called with the LWP's mutex held, and will
427 * always release it.
428 */
429 void
430 sleepq_unsleep(struct lwp *l)
431 {
432 sleepq_t *sq = l->l_sleepq;
433 int swapin;
434
435 LOCK_ASSERT(lwp_locked(l, NULL));
436 KASSERT(l->l_wchan != NULL);
437 KASSERT(l->l_mutex == sq->sq_mutex);
438
439 swapin = sleepq_remove(sq, l);
440 mutex_exit(sq->sq_mutex);
441
442 if (swapin)
443 wakeup(&proc0);
444 }
445
446 /*
447 * sleepq_timeout:
448 *
449 * Entered via the callout(9) subsystem to time out an LWP that is on a
450 * sleep queue.
451 */
452 void
453 sleepq_timeout(void *arg)
454 {
455 struct lwp *l = arg;
456
457 /*
458 * Lock the LWP. Assuming it's still on the sleep queue, its
459 * current mutex will also be the sleep queue mutex.
460 */
461 lwp_lock(l);
462
463 if (l->l_wchan == NULL) {
464 /* Somebody beat us to it. */
465 lwp_unlock(l);
466 return;
467 }
468
469 sleepq_unsleep(l);
470 }
471
472 /*
473 * sleepq_sigtoerror:
474 *
475 * Given a signal number, interpret and return an error code.
476 */
477 int
478 sleepq_sigtoerror(struct lwp *l, int sig)
479 {
480 struct proc *p = l->l_proc;
481 int error;
482
483 LOCK_ASSERT(mutex_owned(&p->p_smutex));
484
485 /*
486 * If this sleep was canceled, don't let the syscall restart.
487 */
488 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
489 error = EINTR;
490 else
491 error = ERESTART;
492
493 return error;
494 }
495
496 /*
497 * sleepq_abort:
498 *
499 * After a panic or during autoconfiguration, lower the interrupt
500 * priority level to give pending interrupts a chance to run, and
501 * then return. Called if sleepq_dontsleep() returns non-zero, and
502 * always returns zero.
503 */
504 int
505 sleepq_abort(kmutex_t *mtx, int unlock)
506 {
507 extern int safepri;
508 int s;
509
510 s = splhigh();
511 splx(safepri);
512 splx(s);
513 if (mtx != NULL && unlock != 0)
514 mutex_exit(mtx);
515
516 return 0;
517 }
518
519 /*
520 * sleepq_changepri:
521 *
522 * Adjust the priority of an LWP residing on a sleepq.
523 */
524 void
525 sleepq_changepri(struct lwp *l, int pri)
526 {
527 sleepq_t *sq = l->l_sleepq;
528
529 KASSERT(lwp_locked(l, sq->sq_mutex));
530
531 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
532 sleepq_insert(sq, l, pri, l->l_syncobj);
533 }
534