kern_sleepq.c revision 1.10 1 /* $NetBSD: kern_sleepq.c,v 1.10 2007/07/09 21:10:53 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.10 2007/07/09 21:10:53 ad Exp $");
46
47 #include "opt_ktrace.h"
48
49 #include <sys/param.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/cpu.h>
53 #include <sys/pool.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/systm.h>
58 #include <sys/sleepq.h>
59 #ifdef KTRACE
60 #include <sys/ktrace.h>
61 #endif
62
63 #include <uvm/uvm_extern.h>
64
65 int sleepq_sigtoerror(lwp_t *, int);
66
67 /* General purpose sleep table, used by ltsleep() and condition variables. */
68 sleeptab_t sleeptab;
69
70 /*
71 * sleeptab_init:
72 *
73 * Initialize a sleep table.
74 */
75 void
76 sleeptab_init(sleeptab_t *st)
77 {
78 sleepq_t *sq;
79 int i;
80
81 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
82 sq = &st->st_queues[i].st_queue;
83 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
84 sleepq_init(sq, &st->st_queues[i].st_mutex);
85 }
86 }
87
88 /*
89 * sleepq_init:
90 *
91 * Prepare a sleep queue for use.
92 */
93 void
94 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
95 {
96
97 sq->sq_waiters = 0;
98 sq->sq_mutex = mtx;
99 TAILQ_INIT(&sq->sq_queue);
100 }
101
102 /*
103 * sleepq_remove:
104 *
105 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
106 * the LWP is swapped out; if so the caller needs to awaken the swapper
107 * to bring the LWP into memory.
108 */
109 int
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 struct schedstate_percpu *spc;
113 struct cpu_info *ci;
114
115 KASSERT(lwp_locked(l, sq->sq_mutex));
116 KASSERT(sq->sq_waiters > 0);
117
118 sq->sq_waiters--;
119 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
120
121 #ifdef DIAGNOSTIC
122 if (sq->sq_waiters == 0)
123 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
124 else
125 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
126 #endif
127
128 l->l_syncobj = &sched_syncobj;
129 l->l_wchan = NULL;
130 l->l_sleepq = NULL;
131 l->l_flag &= ~LW_SINTR;
132
133 ci = l->l_cpu;
134 spc = &ci->ci_schedstate;
135
136 /*
137 * If not sleeping, the LWP must have been suspended. Let whoever
138 * holds it stopped set it running again.
139 */
140 if (l->l_stat != LSSLEEP) {
141 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
142 lwp_setlock(l, &spc->spc_lwplock);
143 return 0;
144 }
145
146 /*
147 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
148 * about to call mi_switch(), in which case it will yield.
149 */
150 if ((l->l_flag & LW_RUNNING) != 0) {
151 l->l_stat = LSONPROC;
152 l->l_slptime = 0;
153 lwp_setlock(l, &spc->spc_lwplock);
154 return 0;
155 }
156
157 /*
158 * Set it running. We'll try to get the last CPU that ran
159 * this LWP to pick it up again.
160 */
161 spc_lock(ci);
162 lwp_setlock(l, spc->spc_mutex);
163 sched_setrunnable(l);
164 l->l_stat = LSRUN;
165 l->l_slptime = 0;
166 if ((l->l_flag & LW_INMEM) != 0) {
167 sched_enqueue(l, false);
168 if (lwp_eprio(l) < spc->spc_curpriority)
169 cpu_need_resched(ci, 0);
170 spc_unlock(ci);
171 return 0;
172 }
173 spc_unlock(ci);
174 return 1;
175 }
176
177 /*
178 * sleepq_insert:
179 *
180 * Insert an LWP into the sleep queue, optionally sorting by priority.
181 */
182 inline void
183 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
184 {
185 lwp_t *l2;
186 const int pri = lwp_eprio(l);
187
188 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
189 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
190 if (lwp_eprio(l2) > pri) {
191 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
192 return;
193 }
194 }
195 }
196
197 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
198 }
199
200 /*
201 * sleepq_enqueue:
202 *
203 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
204 * queue must already be locked, and any interlock (such as the kernel
205 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
206 */
207 void
208 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
209 syncobj_t *sobj)
210 {
211 lwp_t *l = curlwp;
212
213 KASSERT(mutex_owned(sq->sq_mutex));
214 KASSERT(l->l_stat == LSONPROC);
215 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
216
217 l->l_syncobj = sobj;
218 l->l_wchan = wchan;
219 l->l_sleepq = sq;
220 l->l_wmesg = wmesg;
221 l->l_slptime = 0;
222 l->l_priority = pri;
223 l->l_stat = LSSLEEP;
224 l->l_sleeperr = 0;
225
226 sq->sq_waiters++;
227 sleepq_insert(sq, l, sobj);
228 }
229
230 /*
231 * sleepq_block:
232 *
233 * After any intermediate step such as releasing an interlock, switch.
234 * sleepq_block() may return early under exceptional conditions, for
235 * example if the LWP's containing process is exiting.
236 */
237 int
238 sleepq_block(int timo, bool catch)
239 {
240 int error = 0, sig;
241 struct proc *p;
242 lwp_t *l = curlwp;
243
244 #ifdef KTRACE
245 if (KTRPOINT(l->l_proc, KTR_CSW))
246 ktrcsw(l, 1, 0);
247 #endif
248
249 /*
250 * If sleeping interruptably, check for pending signals, exits or
251 * core dump events.
252 */
253 if (catch) {
254 l->l_flag |= LW_SINTR;
255 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
256 /* lwp_unsleep() will release the lock */
257 lwp_unsleep(l);
258 error = EINTR;
259 goto catchit;
260 }
261 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
262 l->l_flag &= ~LW_CANCELLED;
263 /* lwp_unsleep() will release the lock */
264 lwp_unsleep(l);
265 error = EINTR;
266 goto catchit;
267 }
268 }
269
270 if (timo)
271 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
272
273 mi_switch(l);
274
275 /*
276 * When we reach this point, the LWP and sleep queue are unlocked.
277 */
278 if (timo) {
279 /*
280 * Even if the callout appears to have fired, we need to
281 * stop it in order to synchronise with other CPUs.
282 */
283 if (callout_stop(&l->l_tsleep_ch))
284 error = EWOULDBLOCK;
285 }
286
287 if (catch && error == 0) {
288 catchit:
289 p = l->l_proc;
290 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
291 error = EINTR;
292 else if ((l->l_flag & LW_PENDSIG) != 0) {
293 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
294 mutex_enter(&p->p_smutex);
295 if ((sig = issignal(l)) != 0)
296 error = sleepq_sigtoerror(l, sig);
297 mutex_exit(&p->p_smutex);
298 KERNEL_UNLOCK_LAST(l);
299 }
300 }
301
302 #ifdef KTRACE
303 if (KTRPOINT(l->l_proc, KTR_CSW))
304 ktrcsw(l, 0, 0);
305 #endif
306
307 KERNEL_LOCK(l->l_biglocks, l);
308 return error;
309 }
310
311 /*
312 * sleepq_wake:
313 *
314 * Wake zero or more LWPs blocked on a single wait channel.
315 */
316 lwp_t *
317 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
318 {
319 lwp_t *l, *next;
320 int swapin = 0;
321
322 KASSERT(mutex_owned(sq->sq_mutex));
323
324 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
325 KASSERT(l->l_sleepq == sq);
326 next = TAILQ_NEXT(l, l_sleepchain);
327 if (l->l_wchan != wchan)
328 continue;
329 swapin |= sleepq_remove(sq, l);
330 if (--expected == 0)
331 break;
332 }
333
334 sleepq_unlock(sq);
335
336 /*
337 * If there are newly awakend threads that need to be swapped in,
338 * then kick the swapper into action.
339 */
340 if (swapin)
341 uvm_kick_scheduler();
342
343 return l;
344 }
345
346 /*
347 * sleepq_unsleep:
348 *
349 * Remove an LWP from its sleep queue and set it runnable again.
350 * sleepq_unsleep() is called with the LWP's mutex held, and will
351 * always release it.
352 */
353 void
354 sleepq_unsleep(lwp_t *l)
355 {
356 sleepq_t *sq = l->l_sleepq;
357 int swapin;
358
359 KASSERT(lwp_locked(l, NULL));
360 KASSERT(l->l_wchan != NULL);
361 KASSERT(l->l_mutex == sq->sq_mutex);
362
363 swapin = sleepq_remove(sq, l);
364 sleepq_unlock(sq);
365
366 if (swapin)
367 uvm_kick_scheduler();
368 }
369
370 /*
371 * sleepq_timeout:
372 *
373 * Entered via the callout(9) subsystem to time out an LWP that is on a
374 * sleep queue.
375 */
376 void
377 sleepq_timeout(void *arg)
378 {
379 lwp_t *l = arg;
380
381 /*
382 * Lock the LWP. Assuming it's still on the sleep queue, its
383 * current mutex will also be the sleep queue mutex.
384 */
385 lwp_lock(l);
386
387 if (l->l_wchan == NULL) {
388 /* Somebody beat us to it. */
389 lwp_unlock(l);
390 return;
391 }
392
393 lwp_unsleep(l);
394 }
395
396 /*
397 * sleepq_sigtoerror:
398 *
399 * Given a signal number, interpret and return an error code.
400 */
401 int
402 sleepq_sigtoerror(lwp_t *l, int sig)
403 {
404 struct proc *p = l->l_proc;
405 int error;
406
407 KASSERT(mutex_owned(&p->p_smutex));
408
409 /*
410 * If this sleep was canceled, don't let the syscall restart.
411 */
412 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
413 error = EINTR;
414 else
415 error = ERESTART;
416
417 return error;
418 }
419
420 /*
421 * sleepq_abort:
422 *
423 * After a panic or during autoconfiguration, lower the interrupt
424 * priority level to give pending interrupts a chance to run, and
425 * then return. Called if sleepq_dontsleep() returns non-zero, and
426 * always returns zero.
427 */
428 int
429 sleepq_abort(kmutex_t *mtx, int unlock)
430 {
431 extern int safepri;
432 int s;
433
434 s = splhigh();
435 splx(safepri);
436 splx(s);
437 if (mtx != NULL && unlock != 0)
438 mutex_exit(mtx);
439
440 return 0;
441 }
442
443 /*
444 * sleepq_changepri:
445 *
446 * Adjust the priority of an LWP residing on a sleepq. This method
447 * will only alter the user priority; the effective priority is
448 * assumed to have been fixed at the time of insertion into the queue.
449 */
450 void
451 sleepq_changepri(lwp_t *l, pri_t pri)
452 {
453
454 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
455 l->l_usrpri = pri;
456 }
457
458 void
459 sleepq_lendpri(lwp_t *l, pri_t pri)
460 {
461 sleepq_t *sq = l->l_sleepq;
462 pri_t opri;
463
464 KASSERT(lwp_locked(l, sq->sq_mutex));
465
466 opri = lwp_eprio(l);
467 l->l_inheritedprio = pri;
468
469 if (lwp_eprio(l) != opri &&
470 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
471 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
472 sleepq_insert(sq, l, l->l_syncobj);
473 }
474 }
475