kern_sleepq.c revision 1.11 1 /* $NetBSD: kern_sleepq.c,v 1.11 2007/08/01 23:30:54 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.11 2007/08/01 23:30:54 ad Exp $");
46
47 #include "opt_ktrace.h"
48
49 #include <sys/param.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/cpu.h>
53 #include <sys/pool.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/systm.h>
58 #include <sys/sleepq.h>
59 #ifdef KTRACE
60 #include <sys/ktrace.h>
61 #endif
62
63 #include <uvm/uvm_extern.h>
64
65 int sleepq_sigtoerror(lwp_t *, int);
66
67 /* General purpose sleep table, used by ltsleep() and condition variables. */
68 sleeptab_t sleeptab;
69
70 /*
71 * sleeptab_init:
72 *
73 * Initialize a sleep table.
74 */
75 void
76 sleeptab_init(sleeptab_t *st)
77 {
78 sleepq_t *sq;
79 int i;
80
81 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
82 sq = &st->st_queues[i].st_queue;
83 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
84 sleepq_init(sq, &st->st_queues[i].st_mutex);
85 }
86 }
87
88 /*
89 * sleepq_init:
90 *
91 * Prepare a sleep queue for use.
92 */
93 void
94 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
95 {
96
97 sq->sq_waiters = 0;
98 sq->sq_mutex = mtx;
99 TAILQ_INIT(&sq->sq_queue);
100 }
101
102 /*
103 * sleepq_remove:
104 *
105 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
106 * the LWP is swapped out; if so the caller needs to awaken the swapper
107 * to bring the LWP into memory.
108 */
109 int
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 struct schedstate_percpu *spc;
113 struct cpu_info *ci;
114
115 KASSERT(lwp_locked(l, sq->sq_mutex));
116 KASSERT(sq->sq_waiters > 0);
117
118 sq->sq_waiters--;
119 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
120
121 #ifdef DIAGNOSTIC
122 if (sq->sq_waiters == 0)
123 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
124 else
125 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
126 #endif
127
128 l->l_syncobj = &sched_syncobj;
129 l->l_wchan = NULL;
130 l->l_sleepq = NULL;
131 l->l_flag &= ~LW_SINTR;
132
133 ci = l->l_cpu;
134 spc = &ci->ci_schedstate;
135
136 /*
137 * If not sleeping, the LWP must have been suspended. Let whoever
138 * holds it stopped set it running again.
139 */
140 if (l->l_stat != LSSLEEP) {
141 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
142 lwp_setlock(l, &spc->spc_lwplock);
143 return 0;
144 }
145
146 /*
147 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
148 * about to call mi_switch(), in which case it will yield.
149 */
150 if ((l->l_flag & LW_RUNNING) != 0) {
151 l->l_stat = LSONPROC;
152 l->l_slptime = 0;
153 lwp_setlock(l, &spc->spc_lwplock);
154 return 0;
155 }
156
157 /*
158 * Set it running. We'll try to get the last CPU that ran
159 * this LWP to pick it up again.
160 */
161 spc_lock(ci);
162 lwp_setlock(l, spc->spc_mutex);
163 sched_setrunnable(l);
164 l->l_stat = LSRUN;
165 l->l_slptime = 0;
166 if ((l->l_flag & LW_INMEM) != 0) {
167 sched_enqueue(l, false);
168 if (lwp_eprio(l) < spc->spc_curpriority)
169 cpu_need_resched(ci, 0);
170 spc_unlock(ci);
171 return 0;
172 }
173 spc_unlock(ci);
174 return 1;
175 }
176
177 /*
178 * sleepq_insert:
179 *
180 * Insert an LWP into the sleep queue, optionally sorting by priority.
181 */
182 inline void
183 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
184 {
185 lwp_t *l2;
186 const int pri = lwp_eprio(l);
187
188 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
189 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
190 if (lwp_eprio(l2) > pri) {
191 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
192 return;
193 }
194 }
195 }
196
197 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
198 }
199
200 /*
201 * sleepq_enqueue:
202 *
203 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
204 * queue must already be locked, and any interlock (such as the kernel
205 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
206 */
207 void
208 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
209 syncobj_t *sobj)
210 {
211 lwp_t *l = curlwp;
212
213 KASSERT(mutex_owned(sq->sq_mutex));
214 KASSERT(l->l_stat == LSONPROC);
215 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
216
217 l->l_syncobj = sobj;
218 l->l_wchan = wchan;
219 l->l_sleepq = sq;
220 l->l_wmesg = wmesg;
221 l->l_slptime = 0;
222 l->l_priority = pri;
223 l->l_stat = LSSLEEP;
224 l->l_sleeperr = 0;
225
226 sq->sq_waiters++;
227 sleepq_insert(sq, l, sobj);
228 }
229
230 /*
231 * sleepq_block:
232 *
233 * After any intermediate step such as releasing an interlock, switch.
234 * sleepq_block() may return early under exceptional conditions, for
235 * example if the LWP's containing process is exiting.
236 */
237 int
238 sleepq_block(int timo, bool catch)
239 {
240 int error = 0, sig;
241 struct proc *p;
242 lwp_t *l = curlwp;
243 bool early = false;
244
245 #ifdef KTRACE
246 if (KTRPOINT(l->l_proc, KTR_CSW))
247 ktrcsw(l, 1, 0);
248 #endif
249
250 /*
251 * If sleeping interruptably, check for pending signals, exits or
252 * core dump events.
253 */
254 if (catch) {
255 l->l_flag |= LW_SINTR;
256 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
257 /* lwp_unsleep() will release the lock */
258 lwp_unsleep(l);
259 early = true;
260 }
261 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
262 l->l_flag &= ~LW_CANCELLED;
263 /* lwp_unsleep() will release the lock */
264 lwp_unsleep(l);
265 early = true;
266 }
267 }
268
269 if (!early) {
270 if (timo)
271 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
272 mi_switch(l);
273
274 /* The LWP and sleep queue are now unlocked. */
275 if (timo) {
276 /*
277 * Even if the callout appears to have fired, we need to
278 * stop it in order to synchronise with other CPUs.
279 */
280 if (callout_stop(&l->l_tsleep_ch))
281 error = EWOULDBLOCK;
282 }
283 }
284
285 if (catch && error == 0) {
286 p = l->l_proc;
287 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
288 error = EINTR;
289 else if ((l->l_flag & LW_PENDSIG) != 0) {
290 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
291 mutex_enter(&p->p_smutex);
292 if ((sig = issignal(l)) != 0)
293 error = sleepq_sigtoerror(l, sig);
294 mutex_exit(&p->p_smutex);
295 KERNEL_UNLOCK_LAST(l);
296 }
297 }
298
299 #ifdef KTRACE
300 if (KTRPOINT(l->l_proc, KTR_CSW))
301 ktrcsw(l, 0, 0);
302 #endif
303
304 KERNEL_LOCK(l->l_biglocks, l);
305 return error;
306 }
307
308 /*
309 * sleepq_wake:
310 *
311 * Wake zero or more LWPs blocked on a single wait channel.
312 */
313 lwp_t *
314 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
315 {
316 lwp_t *l, *next;
317 int swapin = 0;
318
319 KASSERT(mutex_owned(sq->sq_mutex));
320
321 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
322 KASSERT(l->l_sleepq == sq);
323 next = TAILQ_NEXT(l, l_sleepchain);
324 if (l->l_wchan != wchan)
325 continue;
326 swapin |= sleepq_remove(sq, l);
327 if (--expected == 0)
328 break;
329 }
330
331 sleepq_unlock(sq);
332
333 /*
334 * If there are newly awakend threads that need to be swapped in,
335 * then kick the swapper into action.
336 */
337 if (swapin)
338 uvm_kick_scheduler();
339
340 return l;
341 }
342
343 /*
344 * sleepq_unsleep:
345 *
346 * Remove an LWP from its sleep queue and set it runnable again.
347 * sleepq_unsleep() is called with the LWP's mutex held, and will
348 * always release it.
349 */
350 void
351 sleepq_unsleep(lwp_t *l)
352 {
353 sleepq_t *sq = l->l_sleepq;
354 int swapin;
355
356 KASSERT(lwp_locked(l, NULL));
357 KASSERT(l->l_wchan != NULL);
358 KASSERT(l->l_mutex == sq->sq_mutex);
359
360 swapin = sleepq_remove(sq, l);
361 sleepq_unlock(sq);
362
363 if (swapin)
364 uvm_kick_scheduler();
365 }
366
367 /*
368 * sleepq_timeout:
369 *
370 * Entered via the callout(9) subsystem to time out an LWP that is on a
371 * sleep queue.
372 */
373 void
374 sleepq_timeout(void *arg)
375 {
376 lwp_t *l = arg;
377
378 /*
379 * Lock the LWP. Assuming it's still on the sleep queue, its
380 * current mutex will also be the sleep queue mutex.
381 */
382 lwp_lock(l);
383
384 if (l->l_wchan == NULL) {
385 /* Somebody beat us to it. */
386 lwp_unlock(l);
387 return;
388 }
389
390 lwp_unsleep(l);
391 }
392
393 /*
394 * sleepq_sigtoerror:
395 *
396 * Given a signal number, interpret and return an error code.
397 */
398 int
399 sleepq_sigtoerror(lwp_t *l, int sig)
400 {
401 struct proc *p = l->l_proc;
402 int error;
403
404 KASSERT(mutex_owned(&p->p_smutex));
405
406 /*
407 * If this sleep was canceled, don't let the syscall restart.
408 */
409 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
410 error = EINTR;
411 else
412 error = ERESTART;
413
414 return error;
415 }
416
417 /*
418 * sleepq_abort:
419 *
420 * After a panic or during autoconfiguration, lower the interrupt
421 * priority level to give pending interrupts a chance to run, and
422 * then return. Called if sleepq_dontsleep() returns non-zero, and
423 * always returns zero.
424 */
425 int
426 sleepq_abort(kmutex_t *mtx, int unlock)
427 {
428 extern int safepri;
429 int s;
430
431 s = splhigh();
432 splx(safepri);
433 splx(s);
434 if (mtx != NULL && unlock != 0)
435 mutex_exit(mtx);
436
437 return 0;
438 }
439
440 /*
441 * sleepq_changepri:
442 *
443 * Adjust the priority of an LWP residing on a sleepq. This method
444 * will only alter the user priority; the effective priority is
445 * assumed to have been fixed at the time of insertion into the queue.
446 */
447 void
448 sleepq_changepri(lwp_t *l, pri_t pri)
449 {
450
451 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
452 l->l_usrpri = pri;
453 }
454
455 void
456 sleepq_lendpri(lwp_t *l, pri_t pri)
457 {
458 sleepq_t *sq = l->l_sleepq;
459 pri_t opri;
460
461 KASSERT(lwp_locked(l, sq->sq_mutex));
462
463 opri = lwp_eprio(l);
464 l->l_inheritedprio = pri;
465
466 if (lwp_eprio(l) != opri &&
467 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
468 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
469 sleepq_insert(sq, l, l->l_syncobj);
470 }
471 }
472