kern_sleepq.c revision 1.11.2.6 1 /* $NetBSD: kern_sleepq.c,v 1.11.2.6 2007/12/09 19:38:20 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.11.2.6 2007/12/09 19:38:20 jmcneill Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
80 IPL_SCHED);
81 sleepq_init(sq, &st->st_queues[i].st_mutex);
82 }
83 }
84
85 /*
86 * sleepq_init:
87 *
88 * Prepare a sleep queue for use.
89 */
90 void
91 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
92 {
93
94 sq->sq_waiters = 0;
95 sq->sq_mutex = mtx;
96 TAILQ_INIT(&sq->sq_queue);
97 }
98
99 /*
100 * sleepq_remove:
101 *
102 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
103 * the LWP is swapped out; if so the caller needs to awaken the swapper
104 * to bring the LWP into memory.
105 */
106 int
107 sleepq_remove(sleepq_t *sq, lwp_t *l)
108 {
109 struct schedstate_percpu *spc;
110 struct cpu_info *ci;
111 pri_t pri;
112
113 KASSERT(lwp_locked(l, sq->sq_mutex));
114 KASSERT(sq->sq_waiters > 0);
115
116 sq->sq_waiters--;
117 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
118
119 #ifdef DIAGNOSTIC
120 if (sq->sq_waiters == 0)
121 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
122 else
123 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
124 #endif
125
126 l->l_syncobj = &sched_syncobj;
127 l->l_wchan = NULL;
128 l->l_sleepq = NULL;
129 l->l_flag &= ~LW_SINTR;
130
131 ci = l->l_cpu;
132 spc = &ci->ci_schedstate;
133
134 /*
135 * If not sleeping, the LWP must have been suspended. Let whoever
136 * holds it stopped set it running again.
137 */
138 if (l->l_stat != LSSLEEP) {
139 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
140 lwp_setlock(l, &spc->spc_lwplock);
141 return 0;
142 }
143
144 /*
145 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
146 * about to call mi_switch(), in which case it will yield.
147 */
148 if ((l->l_flag & LW_RUNNING) != 0) {
149 l->l_stat = LSONPROC;
150 l->l_slptime = 0;
151 lwp_setlock(l, &spc->spc_lwplock);
152 return 0;
153 }
154
155 /*
156 * Call the wake-up handler of scheduler.
157 * It might change the CPU for this thread.
158 */
159 sched_wakeup(l);
160 ci = l->l_cpu;
161 spc = &ci->ci_schedstate;
162
163 /*
164 * Set it running.
165 */
166 spc_lock(ci);
167 lwp_setlock(l, spc->spc_mutex);
168 sched_setrunnable(l);
169 l->l_stat = LSRUN;
170 l->l_slptime = 0;
171 if ((l->l_flag & LW_INMEM) != 0) {
172 sched_enqueue(l, false);
173 pri = lwp_eprio(l);
174 /* XXX This test is not good enough! */
175 if (pri > spc->spc_curpriority) {
176 cpu_need_resched(ci,
177 (pri >= PRI_KERNEL ? RESCHED_IMMED : 0));
178 }
179 spc_unlock(ci);
180 return 0;
181 }
182 spc_unlock(ci);
183 return 1;
184 }
185
186 /*
187 * sleepq_insert:
188 *
189 * Insert an LWP into the sleep queue, optionally sorting by priority.
190 */
191 inline void
192 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
193 {
194 lwp_t *l2;
195 const int pri = lwp_eprio(l);
196
197 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
198 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
199 if (lwp_eprio(l2) < pri) {
200 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
201 return;
202 }
203 }
204 }
205
206 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
207 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
208 else
209 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
210 }
211
212 /*
213 * sleepq_enqueue:
214 *
215 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
216 * queue must already be locked, and any interlock (such as the kernel
217 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
218 */
219 void
220 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
221 {
222 lwp_t *l = curlwp;
223
224 KASSERT(mutex_owned(sq->sq_mutex));
225 KASSERT(l->l_stat == LSONPROC);
226 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
227
228 l->l_syncobj = sobj;
229 l->l_wchan = wchan;
230 l->l_sleepq = sq;
231 l->l_wmesg = wmesg;
232 l->l_slptime = 0;
233 l->l_stat = LSSLEEP;
234 l->l_sleeperr = 0;
235
236 sq->sq_waiters++;
237 sleepq_insert(sq, l, sobj);
238 sched_slept(l);
239 }
240
241 /*
242 * sleepq_block:
243 *
244 * After any intermediate step such as releasing an interlock, switch.
245 * sleepq_block() may return early under exceptional conditions, for
246 * example if the LWP's containing process is exiting.
247 */
248 int
249 sleepq_block(int timo, bool catch)
250 {
251 int error = 0, sig;
252 struct proc *p;
253 lwp_t *l = curlwp;
254 bool early = false;
255
256 ktrcsw(1, 0);
257
258 /*
259 * If sleeping interruptably, check for pending signals, exits or
260 * core dump events.
261 */
262 if (catch) {
263 l->l_flag |= LW_SINTR;
264 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
265 l->l_flag &= ~LW_CANCELLED;
266 error = EINTR;
267 early = true;
268 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
269 early = true;
270 }
271
272 if (early) {
273 /* lwp_unsleep() will release the lock */
274 lwp_unsleep(l);
275 } else {
276 if (timo)
277 callout_schedule(&l->l_timeout_ch, timo);
278 mi_switch(l);
279
280 /* The LWP and sleep queue are now unlocked. */
281 if (timo) {
282 /*
283 * Even if the callout appears to have fired, we need to
284 * stop it in order to synchronise with other CPUs.
285 */
286 if (callout_stop(&l->l_timeout_ch))
287 error = EWOULDBLOCK;
288 }
289 }
290
291 if (catch && error == 0) {
292 p = l->l_proc;
293 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
294 error = EINTR;
295 else if ((l->l_flag & LW_PENDSIG) != 0) {
296 mutex_enter(&p->p_smutex);
297 if ((sig = issignal(l)) != 0)
298 error = sleepq_sigtoerror(l, sig);
299 mutex_exit(&p->p_smutex);
300 }
301 }
302
303 ktrcsw(0, 0);
304
305 KERNEL_LOCK(l->l_biglocks, l);
306 return error;
307 }
308
309 /*
310 * sleepq_wake:
311 *
312 * Wake zero or more LWPs blocked on a single wait channel.
313 */
314 lwp_t *
315 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
316 {
317 lwp_t *l, *next;
318 int swapin = 0;
319
320 KASSERT(mutex_owned(sq->sq_mutex));
321
322 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
323 KASSERT(l->l_sleepq == sq);
324 next = TAILQ_NEXT(l, l_sleepchain);
325 if (l->l_wchan != wchan)
326 continue;
327 swapin |= sleepq_remove(sq, l);
328 if (--expected == 0)
329 break;
330 }
331
332 sleepq_unlock(sq);
333
334 /*
335 * If there are newly awakend threads that need to be swapped in,
336 * then kick the swapper into action.
337 */
338 if (swapin)
339 uvm_kick_scheduler();
340
341 return l;
342 }
343
344 /*
345 * sleepq_unsleep:
346 *
347 * Remove an LWP from its sleep queue and set it runnable again.
348 * sleepq_unsleep() is called with the LWP's mutex held, and will
349 * always release it.
350 */
351 void
352 sleepq_unsleep(lwp_t *l)
353 {
354 sleepq_t *sq = l->l_sleepq;
355 int swapin;
356
357 KASSERT(lwp_locked(l, NULL));
358 KASSERT(l->l_wchan != NULL);
359 KASSERT(l->l_mutex == sq->sq_mutex);
360
361 swapin = sleepq_remove(sq, l);
362 sleepq_unlock(sq);
363
364 if (swapin)
365 uvm_kick_scheduler();
366 }
367
368 /*
369 * sleepq_timeout:
370 *
371 * Entered via the callout(9) subsystem to time out an LWP that is on a
372 * sleep queue.
373 */
374 void
375 sleepq_timeout(void *arg)
376 {
377 lwp_t *l = arg;
378
379 /*
380 * Lock the LWP. Assuming it's still on the sleep queue, its
381 * current mutex will also be the sleep queue mutex.
382 */
383 lwp_lock(l);
384
385 if (l->l_wchan == NULL) {
386 /* Somebody beat us to it. */
387 lwp_unlock(l);
388 return;
389 }
390
391 lwp_unsleep(l);
392 }
393
394 /*
395 * sleepq_sigtoerror:
396 *
397 * Given a signal number, interpret and return an error code.
398 */
399 int
400 sleepq_sigtoerror(lwp_t *l, int sig)
401 {
402 struct proc *p = l->l_proc;
403 int error;
404
405 KASSERT(mutex_owned(&p->p_smutex));
406
407 /*
408 * If this sleep was canceled, don't let the syscall restart.
409 */
410 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
411 error = EINTR;
412 else
413 error = ERESTART;
414
415 return error;
416 }
417
418 /*
419 * sleepq_abort:
420 *
421 * After a panic or during autoconfiguration, lower the interrupt
422 * priority level to give pending interrupts a chance to run, and
423 * then return. Called if sleepq_dontsleep() returns non-zero, and
424 * always returns zero.
425 */
426 int
427 sleepq_abort(kmutex_t *mtx, int unlock)
428 {
429 extern int safepri;
430 int s;
431
432 s = splhigh();
433 splx(safepri);
434 splx(s);
435 if (mtx != NULL && unlock != 0)
436 mutex_exit(mtx);
437
438 return 0;
439 }
440
441 /*
442 * sleepq_changepri:
443 *
444 * Adjust the priority of an LWP residing on a sleepq. This method
445 * will only alter the user priority; the effective priority is
446 * assumed to have been fixed at the time of insertion into the queue.
447 */
448 void
449 sleepq_changepri(lwp_t *l, pri_t pri)
450 {
451 sleepq_t *sq = l->l_sleepq;
452 pri_t opri;
453
454 KASSERT(lwp_locked(l, sq->sq_mutex));
455
456 opri = lwp_eprio(l);
457 l->l_priority = pri;
458 if (lwp_eprio(l) != opri) {
459 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
460 sleepq_insert(sq, l, l->l_syncobj);
461 }
462 }
463
464 void
465 sleepq_lendpri(lwp_t *l, pri_t pri)
466 {
467 sleepq_t *sq = l->l_sleepq;
468 pri_t opri;
469
470 KASSERT(lwp_locked(l, sq->sq_mutex));
471
472 opri = lwp_eprio(l);
473 l->l_inheritedprio = pri;
474
475 if (lwp_eprio(l) != opri &&
476 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
477 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
478 sleepq_insert(sq, l, l->l_syncobj);
479 }
480 }
481