Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.11.2.6
      1 /*	$NetBSD: kern_sleepq.c,v 1.11.2.6 2007/12/09 19:38:20 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.11.2.6 2007/12/09 19:38:20 jmcneill Exp $");
     46 
     47 #include <sys/param.h>
     48 #include <sys/lock.h>
     49 #include <sys/kernel.h>
     50 #include <sys/cpu.h>
     51 #include <sys/pool.h>
     52 #include <sys/proc.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/sched.h>
     55 #include <sys/systm.h>
     56 #include <sys/sleepq.h>
     57 #include <sys/ktrace.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 int	sleepq_sigtoerror(lwp_t *, int);
     62 
     63 /* General purpose sleep table, used by ltsleep() and condition variables. */
     64 sleeptab_t	sleeptab;
     65 
     66 /*
     67  * sleeptab_init:
     68  *
     69  *	Initialize a sleep table.
     70  */
     71 void
     72 sleeptab_init(sleeptab_t *st)
     73 {
     74 	sleepq_t *sq;
     75 	int i;
     76 
     77 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     78 		sq = &st->st_queues[i].st_queue;
     79 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     80 		    IPL_SCHED);
     81 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     82 	}
     83 }
     84 
     85 /*
     86  * sleepq_init:
     87  *
     88  *	Prepare a sleep queue for use.
     89  */
     90 void
     91 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     92 {
     93 
     94 	sq->sq_waiters = 0;
     95 	sq->sq_mutex = mtx;
     96 	TAILQ_INIT(&sq->sq_queue);
     97 }
     98 
     99 /*
    100  * sleepq_remove:
    101  *
    102  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    103  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    104  *	to bring the LWP into memory.
    105  */
    106 int
    107 sleepq_remove(sleepq_t *sq, lwp_t *l)
    108 {
    109 	struct schedstate_percpu *spc;
    110 	struct cpu_info *ci;
    111 	pri_t pri;
    112 
    113 	KASSERT(lwp_locked(l, sq->sq_mutex));
    114 	KASSERT(sq->sq_waiters > 0);
    115 
    116 	sq->sq_waiters--;
    117 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    118 
    119 #ifdef DIAGNOSTIC
    120 	if (sq->sq_waiters == 0)
    121 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    122 	else
    123 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    124 #endif
    125 
    126 	l->l_syncobj = &sched_syncobj;
    127 	l->l_wchan = NULL;
    128 	l->l_sleepq = NULL;
    129 	l->l_flag &= ~LW_SINTR;
    130 
    131 	ci = l->l_cpu;
    132 	spc = &ci->ci_schedstate;
    133 
    134 	/*
    135 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    136 	 * holds it stopped set it running again.
    137 	 */
    138 	if (l->l_stat != LSSLEEP) {
    139 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    140 		lwp_setlock(l, &spc->spc_lwplock);
    141 		return 0;
    142 	}
    143 
    144 	/*
    145 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    146 	 * about to call mi_switch(), in which case it will yield.
    147 	 */
    148 	if ((l->l_flag & LW_RUNNING) != 0) {
    149 		l->l_stat = LSONPROC;
    150 		l->l_slptime = 0;
    151 		lwp_setlock(l, &spc->spc_lwplock);
    152 		return 0;
    153 	}
    154 
    155 	/*
    156 	 * Call the wake-up handler of scheduler.
    157 	 * It might change the CPU for this thread.
    158 	 */
    159 	sched_wakeup(l);
    160 	ci = l->l_cpu;
    161 	spc = &ci->ci_schedstate;
    162 
    163 	/*
    164 	 * Set it running.
    165 	 */
    166 	spc_lock(ci);
    167 	lwp_setlock(l, spc->spc_mutex);
    168 	sched_setrunnable(l);
    169 	l->l_stat = LSRUN;
    170 	l->l_slptime = 0;
    171 	if ((l->l_flag & LW_INMEM) != 0) {
    172 		sched_enqueue(l, false);
    173 		pri = lwp_eprio(l);
    174 		/* XXX This test is not good enough! */
    175 		if (pri > spc->spc_curpriority) {
    176 			cpu_need_resched(ci,
    177 			    (pri >= PRI_KERNEL ? RESCHED_IMMED : 0));
    178 		}
    179 		spc_unlock(ci);
    180 		return 0;
    181 	}
    182 	spc_unlock(ci);
    183 	return 1;
    184 }
    185 
    186 /*
    187  * sleepq_insert:
    188  *
    189  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    190  */
    191 inline void
    192 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    193 {
    194 	lwp_t *l2;
    195 	const int pri = lwp_eprio(l);
    196 
    197 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    198 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    199 			if (lwp_eprio(l2) < pri) {
    200 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    201 				return;
    202 			}
    203 		}
    204 	}
    205 
    206 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    207 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    208 	else
    209 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    210 }
    211 
    212 /*
    213  * sleepq_enqueue:
    214  *
    215  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    216  *	queue must already be locked, and any interlock (such as the kernel
    217  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    218  */
    219 void
    220 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    221 {
    222 	lwp_t *l = curlwp;
    223 
    224 	KASSERT(mutex_owned(sq->sq_mutex));
    225 	KASSERT(l->l_stat == LSONPROC);
    226 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    227 
    228 	l->l_syncobj = sobj;
    229 	l->l_wchan = wchan;
    230 	l->l_sleepq = sq;
    231 	l->l_wmesg = wmesg;
    232 	l->l_slptime = 0;
    233 	l->l_stat = LSSLEEP;
    234 	l->l_sleeperr = 0;
    235 
    236 	sq->sq_waiters++;
    237 	sleepq_insert(sq, l, sobj);
    238 	sched_slept(l);
    239 }
    240 
    241 /*
    242  * sleepq_block:
    243  *
    244  *	After any intermediate step such as releasing an interlock, switch.
    245  * 	sleepq_block() may return early under exceptional conditions, for
    246  * 	example if the LWP's containing process is exiting.
    247  */
    248 int
    249 sleepq_block(int timo, bool catch)
    250 {
    251 	int error = 0, sig;
    252 	struct proc *p;
    253 	lwp_t *l = curlwp;
    254 	bool early = false;
    255 
    256 	ktrcsw(1, 0);
    257 
    258 	/*
    259 	 * If sleeping interruptably, check for pending signals, exits or
    260 	 * core dump events.
    261 	 */
    262 	if (catch) {
    263 		l->l_flag |= LW_SINTR;
    264 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    265 			l->l_flag &= ~LW_CANCELLED;
    266 			error = EINTR;
    267 			early = true;
    268 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    269 			early = true;
    270 	}
    271 
    272 	if (early) {
    273 		/* lwp_unsleep() will release the lock */
    274 		lwp_unsleep(l);
    275 	} else {
    276 		if (timo)
    277 			callout_schedule(&l->l_timeout_ch, timo);
    278 		mi_switch(l);
    279 
    280 		/* The LWP and sleep queue are now unlocked. */
    281 		if (timo) {
    282 			/*
    283 			 * Even if the callout appears to have fired, we need to
    284 			 * stop it in order to synchronise with other CPUs.
    285 			 */
    286 			if (callout_stop(&l->l_timeout_ch))
    287 				error = EWOULDBLOCK;
    288 		}
    289 	}
    290 
    291 	if (catch && error == 0) {
    292 		p = l->l_proc;
    293 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    294 			error = EINTR;
    295 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    296 			mutex_enter(&p->p_smutex);
    297 			if ((sig = issignal(l)) != 0)
    298 				error = sleepq_sigtoerror(l, sig);
    299 			mutex_exit(&p->p_smutex);
    300 		}
    301 	}
    302 
    303 	ktrcsw(0, 0);
    304 
    305 	KERNEL_LOCK(l->l_biglocks, l);
    306 	return error;
    307 }
    308 
    309 /*
    310  * sleepq_wake:
    311  *
    312  *	Wake zero or more LWPs blocked on a single wait channel.
    313  */
    314 lwp_t *
    315 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    316 {
    317 	lwp_t *l, *next;
    318 	int swapin = 0;
    319 
    320 	KASSERT(mutex_owned(sq->sq_mutex));
    321 
    322 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    323 		KASSERT(l->l_sleepq == sq);
    324 		next = TAILQ_NEXT(l, l_sleepchain);
    325 		if (l->l_wchan != wchan)
    326 			continue;
    327 		swapin |= sleepq_remove(sq, l);
    328 		if (--expected == 0)
    329 			break;
    330 	}
    331 
    332 	sleepq_unlock(sq);
    333 
    334 	/*
    335 	 * If there are newly awakend threads that need to be swapped in,
    336 	 * then kick the swapper into action.
    337 	 */
    338 	if (swapin)
    339 		uvm_kick_scheduler();
    340 
    341 	return l;
    342 }
    343 
    344 /*
    345  * sleepq_unsleep:
    346  *
    347  *	Remove an LWP from its sleep queue and set it runnable again.
    348  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    349  *	always release it.
    350  */
    351 void
    352 sleepq_unsleep(lwp_t *l)
    353 {
    354 	sleepq_t *sq = l->l_sleepq;
    355 	int swapin;
    356 
    357 	KASSERT(lwp_locked(l, NULL));
    358 	KASSERT(l->l_wchan != NULL);
    359 	KASSERT(l->l_mutex == sq->sq_mutex);
    360 
    361 	swapin = sleepq_remove(sq, l);
    362 	sleepq_unlock(sq);
    363 
    364 	if (swapin)
    365 		uvm_kick_scheduler();
    366 }
    367 
    368 /*
    369  * sleepq_timeout:
    370  *
    371  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    372  *	sleep queue.
    373  */
    374 void
    375 sleepq_timeout(void *arg)
    376 {
    377 	lwp_t *l = arg;
    378 
    379 	/*
    380 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    381 	 * current mutex will also be the sleep queue mutex.
    382 	 */
    383 	lwp_lock(l);
    384 
    385 	if (l->l_wchan == NULL) {
    386 		/* Somebody beat us to it. */
    387 		lwp_unlock(l);
    388 		return;
    389 	}
    390 
    391 	lwp_unsleep(l);
    392 }
    393 
    394 /*
    395  * sleepq_sigtoerror:
    396  *
    397  *	Given a signal number, interpret and return an error code.
    398  */
    399 int
    400 sleepq_sigtoerror(lwp_t *l, int sig)
    401 {
    402 	struct proc *p = l->l_proc;
    403 	int error;
    404 
    405 	KASSERT(mutex_owned(&p->p_smutex));
    406 
    407 	/*
    408 	 * If this sleep was canceled, don't let the syscall restart.
    409 	 */
    410 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    411 		error = EINTR;
    412 	else
    413 		error = ERESTART;
    414 
    415 	return error;
    416 }
    417 
    418 /*
    419  * sleepq_abort:
    420  *
    421  *	After a panic or during autoconfiguration, lower the interrupt
    422  *	priority level to give pending interrupts a chance to run, and
    423  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    424  *	always returns zero.
    425  */
    426 int
    427 sleepq_abort(kmutex_t *mtx, int unlock)
    428 {
    429 	extern int safepri;
    430 	int s;
    431 
    432 	s = splhigh();
    433 	splx(safepri);
    434 	splx(s);
    435 	if (mtx != NULL && unlock != 0)
    436 		mutex_exit(mtx);
    437 
    438 	return 0;
    439 }
    440 
    441 /*
    442  * sleepq_changepri:
    443  *
    444  *	Adjust the priority of an LWP residing on a sleepq.  This method
    445  *	will only alter the user priority; the effective priority is
    446  *	assumed to have been fixed at the time of insertion into the queue.
    447  */
    448 void
    449 sleepq_changepri(lwp_t *l, pri_t pri)
    450 {
    451 	sleepq_t *sq = l->l_sleepq;
    452 	pri_t opri;
    453 
    454 	KASSERT(lwp_locked(l, sq->sq_mutex));
    455 
    456 	opri = lwp_eprio(l);
    457 	l->l_priority = pri;
    458 	if (lwp_eprio(l) != opri) {
    459 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    460 		sleepq_insert(sq, l, l->l_syncobj);
    461 	}
    462 }
    463 
    464 void
    465 sleepq_lendpri(lwp_t *l, pri_t pri)
    466 {
    467 	sleepq_t *sq = l->l_sleepq;
    468 	pri_t opri;
    469 
    470 	KASSERT(lwp_locked(l, sq->sq_mutex));
    471 
    472 	opri = lwp_eprio(l);
    473 	l->l_inheritedprio = pri;
    474 
    475 	if (lwp_eprio(l) != opri &&
    476 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    477 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    478 		sleepq_insert(sq, l, l->l_syncobj);
    479 	}
    480 }
    481