kern_sleepq.c revision 1.14 1 /* $NetBSD: kern_sleepq.c,v 1.14 2007/09/06 23:59:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.14 2007/09/06 23:59:01 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110 pri_t pri;
111
112 KASSERT(lwp_locked(l, sq->sq_mutex));
113 KASSERT(sq->sq_waiters > 0);
114
115 sq->sq_waiters--;
116 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
117
118 #ifdef DIAGNOSTIC
119 if (sq->sq_waiters == 0)
120 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
121 else
122 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
123 #endif
124
125 l->l_syncobj = &sched_syncobj;
126 l->l_wchan = NULL;
127 l->l_sleepq = NULL;
128 l->l_flag &= ~LW_SINTR;
129
130 ci = l->l_cpu;
131 spc = &ci->ci_schedstate;
132
133 /*
134 * If not sleeping, the LWP must have been suspended. Let whoever
135 * holds it stopped set it running again.
136 */
137 if (l->l_stat != LSSLEEP) {
138 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
139 lwp_setlock(l, &spc->spc_lwplock);
140 return 0;
141 }
142
143 /*
144 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
145 * about to call mi_switch(), in which case it will yield.
146 */
147 if ((l->l_flag & LW_RUNNING) != 0) {
148 l->l_stat = LSONPROC;
149 l->l_slptime = 0;
150 lwp_setlock(l, &spc->spc_lwplock);
151 return 0;
152 }
153
154 /*
155 * Set it running. We'll try to get the last CPU that ran
156 * this LWP to pick it up again.
157 */
158 spc_lock(ci);
159 lwp_setlock(l, spc->spc_mutex);
160 sched_setrunnable(l);
161 l->l_stat = LSRUN;
162 l->l_slptime = 0;
163 if ((l->l_flag & LW_INMEM) != 0) {
164 sched_enqueue(l, false);
165 pri = lwp_eprio(l);
166 /* XXX This test is not good enough! */
167 if ((pri < spc->spc_curpriority && pri < PUSER) ||
168 #ifdef MULTIPROCESSOR
169 ci->ci_curlwp == ci->ci_data.cpu_idlelwp) {
170 #else
171 curlwp == ci->ci_data.cpu_idlelwp) {
172 #endif
173 cpu_need_resched(ci, RESCHED_IMMED);
174 }
175 spc_unlock(ci);
176 return 0;
177 }
178 spc_unlock(ci);
179 return 1;
180 }
181
182 /*
183 * sleepq_insert:
184 *
185 * Insert an LWP into the sleep queue, optionally sorting by priority.
186 */
187 inline void
188 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
189 {
190 lwp_t *l2;
191 const int pri = lwp_eprio(l);
192
193 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
194 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
195 if (lwp_eprio(l2) > pri) {
196 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
197 return;
198 }
199 }
200 }
201
202 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
203 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
204 else
205 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
206 }
207
208 /*
209 * sleepq_enqueue:
210 *
211 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
212 * queue must already be locked, and any interlock (such as the kernel
213 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
214 */
215 void
216 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
217 syncobj_t *sobj)
218 {
219 lwp_t *l = curlwp;
220
221 KASSERT(mutex_owned(sq->sq_mutex));
222 KASSERT(l->l_stat == LSONPROC);
223 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
224
225 l->l_syncobj = sobj;
226 l->l_wchan = wchan;
227 l->l_sleepq = sq;
228 l->l_wmesg = wmesg;
229 l->l_slptime = 0;
230 l->l_priority = pri;
231 l->l_stat = LSSLEEP;
232 l->l_sleeperr = 0;
233
234 sq->sq_waiters++;
235 sleepq_insert(sq, l, sobj);
236 }
237
238 /*
239 * sleepq_block:
240 *
241 * After any intermediate step such as releasing an interlock, switch.
242 * sleepq_block() may return early under exceptional conditions, for
243 * example if the LWP's containing process is exiting.
244 */
245 int
246 sleepq_block(int timo, bool catch)
247 {
248 int error = 0, sig;
249 struct proc *p;
250 lwp_t *l = curlwp;
251 bool early = false;
252
253 ktrcsw(1, 0);
254
255 /*
256 * If sleeping interruptably, check for pending signals, exits or
257 * core dump events.
258 */
259 if (catch) {
260 l->l_flag |= LW_SINTR;
261 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
262 l->l_flag &= ~LW_CANCELLED;
263 error = EINTR;
264 early = true;
265 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
266 early = true;
267 }
268
269 if (early) {
270 /* lwp_unsleep() will release the lock */
271 lwp_unsleep(l);
272 } else {
273 if (timo)
274 callout_schedule(&l->l_timeout_ch, timo);
275 mi_switch(l);
276
277 /* The LWP and sleep queue are now unlocked. */
278 if (timo) {
279 /*
280 * Even if the callout appears to have fired, we need to
281 * stop it in order to synchronise with other CPUs.
282 */
283 if (callout_stop(&l->l_timeout_ch))
284 error = EWOULDBLOCK;
285 }
286 }
287
288 if (catch && error == 0) {
289 p = l->l_proc;
290 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
291 error = EINTR;
292 else if ((l->l_flag & LW_PENDSIG) != 0) {
293 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
294 mutex_enter(&p->p_smutex);
295 if ((sig = issignal(l)) != 0)
296 error = sleepq_sigtoerror(l, sig);
297 mutex_exit(&p->p_smutex);
298 KERNEL_UNLOCK_LAST(l);
299 }
300 }
301
302 ktrcsw(0, 0);
303
304 KERNEL_LOCK(l->l_biglocks, l);
305 return error;
306 }
307
308 /*
309 * sleepq_wake:
310 *
311 * Wake zero or more LWPs blocked on a single wait channel.
312 */
313 lwp_t *
314 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
315 {
316 lwp_t *l, *next;
317 int swapin = 0;
318
319 KASSERT(mutex_owned(sq->sq_mutex));
320
321 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
322 KASSERT(l->l_sleepq == sq);
323 next = TAILQ_NEXT(l, l_sleepchain);
324 if (l->l_wchan != wchan)
325 continue;
326 swapin |= sleepq_remove(sq, l);
327 if (--expected == 0)
328 break;
329 }
330
331 sleepq_unlock(sq);
332
333 /*
334 * If there are newly awakend threads that need to be swapped in,
335 * then kick the swapper into action.
336 */
337 if (swapin)
338 uvm_kick_scheduler();
339
340 return l;
341 }
342
343 /*
344 * sleepq_unsleep:
345 *
346 * Remove an LWP from its sleep queue and set it runnable again.
347 * sleepq_unsleep() is called with the LWP's mutex held, and will
348 * always release it.
349 */
350 void
351 sleepq_unsleep(lwp_t *l)
352 {
353 sleepq_t *sq = l->l_sleepq;
354 int swapin;
355
356 KASSERT(lwp_locked(l, NULL));
357 KASSERT(l->l_wchan != NULL);
358 KASSERT(l->l_mutex == sq->sq_mutex);
359
360 swapin = sleepq_remove(sq, l);
361 sleepq_unlock(sq);
362
363 if (swapin)
364 uvm_kick_scheduler();
365 }
366
367 /*
368 * sleepq_timeout:
369 *
370 * Entered via the callout(9) subsystem to time out an LWP that is on a
371 * sleep queue.
372 */
373 void
374 sleepq_timeout(void *arg)
375 {
376 lwp_t *l = arg;
377
378 /*
379 * Lock the LWP. Assuming it's still on the sleep queue, its
380 * current mutex will also be the sleep queue mutex.
381 */
382 lwp_lock(l);
383
384 if (l->l_wchan == NULL) {
385 /* Somebody beat us to it. */
386 lwp_unlock(l);
387 return;
388 }
389
390 lwp_unsleep(l);
391 }
392
393 /*
394 * sleepq_sigtoerror:
395 *
396 * Given a signal number, interpret and return an error code.
397 */
398 int
399 sleepq_sigtoerror(lwp_t *l, int sig)
400 {
401 struct proc *p = l->l_proc;
402 int error;
403
404 KASSERT(mutex_owned(&p->p_smutex));
405
406 /*
407 * If this sleep was canceled, don't let the syscall restart.
408 */
409 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
410 error = EINTR;
411 else
412 error = ERESTART;
413
414 return error;
415 }
416
417 /*
418 * sleepq_abort:
419 *
420 * After a panic or during autoconfiguration, lower the interrupt
421 * priority level to give pending interrupts a chance to run, and
422 * then return. Called if sleepq_dontsleep() returns non-zero, and
423 * always returns zero.
424 */
425 int
426 sleepq_abort(kmutex_t *mtx, int unlock)
427 {
428 extern int safepri;
429 int s;
430
431 s = splhigh();
432 splx(safepri);
433 splx(s);
434 if (mtx != NULL && unlock != 0)
435 mutex_exit(mtx);
436
437 return 0;
438 }
439
440 /*
441 * sleepq_changepri:
442 *
443 * Adjust the priority of an LWP residing on a sleepq. This method
444 * will only alter the user priority; the effective priority is
445 * assumed to have been fixed at the time of insertion into the queue.
446 */
447 void
448 sleepq_changepri(lwp_t *l, pri_t pri)
449 {
450
451 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
452 l->l_usrpri = pri;
453 }
454
455 void
456 sleepq_lendpri(lwp_t *l, pri_t pri)
457 {
458 sleepq_t *sq = l->l_sleepq;
459 pri_t opri;
460
461 KASSERT(lwp_locked(l, sq->sq_mutex));
462
463 opri = lwp_eprio(l);
464 l->l_inheritedprio = pri;
465
466 if (lwp_eprio(l) != opri &&
467 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
468 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
469 sleepq_insert(sq, l, l->l_syncobj);
470 }
471 }
472