kern_sleepq.c revision 1.14.2.2 1 /* $NetBSD: kern_sleepq.c,v 1.14.2.2 2007/10/18 08:33:12 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.14.2.2 2007/10/18 08:33:12 yamt Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110 pri_t pri;
111
112 KASSERT(lwp_locked(l, sq->sq_mutex));
113 KASSERT(sq->sq_waiters > 0);
114
115 sq->sq_waiters--;
116 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
117
118 #ifdef DIAGNOSTIC
119 if (sq->sq_waiters == 0)
120 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
121 else
122 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
123 #endif
124
125 l->l_syncobj = &sched_syncobj;
126 l->l_wchan = NULL;
127 l->l_sleepq = NULL;
128 l->l_flag &= ~LW_SINTR;
129
130 ci = l->l_cpu;
131 spc = &ci->ci_schedstate;
132
133 /*
134 * If not sleeping, the LWP must have been suspended. Let whoever
135 * holds it stopped set it running again.
136 */
137 if (l->l_stat != LSSLEEP) {
138 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
139 lwp_setlock(l, &spc->spc_lwplock);
140 return 0;
141 }
142
143 /*
144 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
145 * about to call mi_switch(), in which case it will yield.
146 */
147 if ((l->l_flag & LW_RUNNING) != 0) {
148 l->l_stat = LSONPROC;
149 l->l_slptime = 0;
150 lwp_setlock(l, &spc->spc_lwplock);
151 return 0;
152 }
153
154 /*
155 * Call the wake-up handler of scheduler.
156 * It might change the CPU for this thread.
157 */
158 sched_wakeup(l);
159 ci = l->l_cpu;
160 spc = &ci->ci_schedstate;
161
162 /*
163 * Set it running.
164 */
165 spc_lock(ci);
166 lwp_setlock(l, spc->spc_mutex);
167 sched_setrunnable(l);
168 l->l_stat = LSRUN;
169 l->l_slptime = 0;
170 if ((l->l_flag & LW_INMEM) != 0) {
171 sched_enqueue(l, false);
172 pri = lwp_eprio(l);
173 /* XXX This test is not good enough! */
174 if ((pri < spc->spc_curpriority && pri < PUSER) ||
175 #ifdef MULTIPROCESSOR
176 ci->ci_curlwp == ci->ci_data.cpu_idlelwp) {
177 #else
178 curlwp == ci->ci_data.cpu_idlelwp) {
179 #endif
180 cpu_need_resched(ci, RESCHED_IMMED);
181 }
182 spc_unlock(ci);
183 return 0;
184 }
185 spc_unlock(ci);
186 return 1;
187 }
188
189 /*
190 * sleepq_insert:
191 *
192 * Insert an LWP into the sleep queue, optionally sorting by priority.
193 */
194 inline void
195 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
196 {
197 lwp_t *l2;
198 const int pri = lwp_eprio(l);
199
200 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
201 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
202 if (lwp_eprio(l2) > pri) {
203 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
204 return;
205 }
206 }
207 }
208
209 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
210 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
211 else
212 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
213 }
214
215 /*
216 * sleepq_enqueue:
217 *
218 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
219 * queue must already be locked, and any interlock (such as the kernel
220 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
221 */
222 void
223 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
224 syncobj_t *sobj)
225 {
226 lwp_t *l = curlwp;
227
228 KASSERT(mutex_owned(sq->sq_mutex));
229 KASSERT(l->l_stat == LSONPROC);
230 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
231
232 l->l_syncobj = sobj;
233 l->l_wchan = wchan;
234 l->l_sleepq = sq;
235 l->l_wmesg = wmesg;
236 l->l_slptime = 0;
237 l->l_priority = pri;
238 l->l_stat = LSSLEEP;
239 l->l_sleeperr = 0;
240
241 sq->sq_waiters++;
242 sleepq_insert(sq, l, sobj);
243 sched_slept(l);
244 }
245
246 /*
247 * sleepq_block:
248 *
249 * After any intermediate step such as releasing an interlock, switch.
250 * sleepq_block() may return early under exceptional conditions, for
251 * example if the LWP's containing process is exiting.
252 */
253 int
254 sleepq_block(int timo, bool catch)
255 {
256 int error = 0, sig;
257 struct proc *p;
258 lwp_t *l = curlwp;
259 bool early = false;
260
261 ktrcsw(1, 0);
262
263 /*
264 * If sleeping interruptably, check for pending signals, exits or
265 * core dump events.
266 */
267 if (catch) {
268 l->l_flag |= LW_SINTR;
269 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
270 l->l_flag &= ~LW_CANCELLED;
271 error = EINTR;
272 early = true;
273 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
274 early = true;
275 }
276
277 if (early) {
278 /* lwp_unsleep() will release the lock */
279 lwp_unsleep(l);
280 } else {
281 if (timo)
282 callout_schedule(&l->l_timeout_ch, timo);
283 mi_switch(l);
284
285 /* The LWP and sleep queue are now unlocked. */
286 if (timo) {
287 /*
288 * Even if the callout appears to have fired, we need to
289 * stop it in order to synchronise with other CPUs.
290 */
291 if (callout_stop(&l->l_timeout_ch))
292 error = EWOULDBLOCK;
293 }
294 }
295
296 if (catch && error == 0) {
297 p = l->l_proc;
298 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
299 error = EINTR;
300 else if ((l->l_flag & LW_PENDSIG) != 0) {
301 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
302 mutex_enter(&p->p_smutex);
303 if ((sig = issignal(l)) != 0)
304 error = sleepq_sigtoerror(l, sig);
305 mutex_exit(&p->p_smutex);
306 KERNEL_UNLOCK_LAST(l);
307 }
308 }
309
310 ktrcsw(0, 0);
311
312 KERNEL_LOCK(l->l_biglocks, l);
313 return error;
314 }
315
316 /*
317 * sleepq_wake:
318 *
319 * Wake zero or more LWPs blocked on a single wait channel.
320 */
321 lwp_t *
322 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
323 {
324 lwp_t *l, *next;
325 int swapin = 0;
326
327 KASSERT(mutex_owned(sq->sq_mutex));
328
329 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
330 KASSERT(l->l_sleepq == sq);
331 next = TAILQ_NEXT(l, l_sleepchain);
332 if (l->l_wchan != wchan)
333 continue;
334 swapin |= sleepq_remove(sq, l);
335 if (--expected == 0)
336 break;
337 }
338
339 sleepq_unlock(sq);
340
341 /*
342 * If there are newly awakend threads that need to be swapped in,
343 * then kick the swapper into action.
344 */
345 if (swapin)
346 uvm_kick_scheduler();
347
348 return l;
349 }
350
351 /*
352 * sleepq_unsleep:
353 *
354 * Remove an LWP from its sleep queue and set it runnable again.
355 * sleepq_unsleep() is called with the LWP's mutex held, and will
356 * always release it.
357 */
358 void
359 sleepq_unsleep(lwp_t *l)
360 {
361 sleepq_t *sq = l->l_sleepq;
362 int swapin;
363
364 KASSERT(lwp_locked(l, NULL));
365 KASSERT(l->l_wchan != NULL);
366 KASSERT(l->l_mutex == sq->sq_mutex);
367
368 swapin = sleepq_remove(sq, l);
369 sleepq_unlock(sq);
370
371 if (swapin)
372 uvm_kick_scheduler();
373 }
374
375 /*
376 * sleepq_timeout:
377 *
378 * Entered via the callout(9) subsystem to time out an LWP that is on a
379 * sleep queue.
380 */
381 void
382 sleepq_timeout(void *arg)
383 {
384 lwp_t *l = arg;
385
386 /*
387 * Lock the LWP. Assuming it's still on the sleep queue, its
388 * current mutex will also be the sleep queue mutex.
389 */
390 lwp_lock(l);
391
392 if (l->l_wchan == NULL) {
393 /* Somebody beat us to it. */
394 lwp_unlock(l);
395 return;
396 }
397
398 lwp_unsleep(l);
399 }
400
401 /*
402 * sleepq_sigtoerror:
403 *
404 * Given a signal number, interpret and return an error code.
405 */
406 int
407 sleepq_sigtoerror(lwp_t *l, int sig)
408 {
409 struct proc *p = l->l_proc;
410 int error;
411
412 KASSERT(mutex_owned(&p->p_smutex));
413
414 /*
415 * If this sleep was canceled, don't let the syscall restart.
416 */
417 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
418 error = EINTR;
419 else
420 error = ERESTART;
421
422 return error;
423 }
424
425 /*
426 * sleepq_abort:
427 *
428 * After a panic or during autoconfiguration, lower the interrupt
429 * priority level to give pending interrupts a chance to run, and
430 * then return. Called if sleepq_dontsleep() returns non-zero, and
431 * always returns zero.
432 */
433 int
434 sleepq_abort(kmutex_t *mtx, int unlock)
435 {
436 extern int safepri;
437 int s;
438
439 s = splhigh();
440 splx(safepri);
441 splx(s);
442 if (mtx != NULL && unlock != 0)
443 mutex_exit(mtx);
444
445 return 0;
446 }
447
448 /*
449 * sleepq_changepri:
450 *
451 * Adjust the priority of an LWP residing on a sleepq. This method
452 * will only alter the user priority; the effective priority is
453 * assumed to have been fixed at the time of insertion into the queue.
454 */
455 void
456 sleepq_changepri(lwp_t *l, pri_t pri)
457 {
458
459 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
460 l->l_usrpri = pri;
461 }
462
463 void
464 sleepq_lendpri(lwp_t *l, pri_t pri)
465 {
466 sleepq_t *sq = l->l_sleepq;
467 pri_t opri;
468
469 KASSERT(lwp_locked(l, sq->sq_mutex));
470
471 opri = lwp_eprio(l);
472 l->l_inheritedprio = pri;
473
474 if (lwp_eprio(l) != opri &&
475 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
476 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
477 sleepq_insert(sq, l, l->l_syncobj);
478 }
479 }
480