kern_sleepq.c revision 1.21.6.3 1 /* $NetBSD: kern_sleepq.c,v 1.21.6.3 2008/06/29 09:33:14 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.21.6.3 2008/06/29 09:33:14 mjf Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/systm.h>
48 #include <sys/sleepq.h>
49 #include <sys/ktrace.h>
50
51 #include <uvm/uvm_extern.h>
52
53 int sleepq_sigtoerror(lwp_t *, int);
54
55 /* General purpose sleep table, used by ltsleep() and condition variables. */
56 sleeptab_t sleeptab;
57
58 /*
59 * sleeptab_init:
60 *
61 * Initialize a sleep table.
62 */
63 void
64 sleeptab_init(sleeptab_t *st)
65 {
66 sleepq_t *sq;
67 int i;
68
69 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
70 sq = &st->st_queues[i].st_queue;
71 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
72 IPL_SCHED);
73 sleepq_init(sq);
74 }
75 }
76
77 /*
78 * sleepq_init:
79 *
80 * Prepare a sleep queue for use.
81 */
82 void
83 sleepq_init(sleepq_t *sq)
84 {
85
86 TAILQ_INIT(sq);
87 }
88
89 /*
90 * sleepq_remove:
91 *
92 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
93 * the LWP is swapped out; if so the caller needs to awaken the swapper
94 * to bring the LWP into memory.
95 */
96 int
97 sleepq_remove(sleepq_t *sq, lwp_t *l)
98 {
99 struct schedstate_percpu *spc;
100 struct cpu_info *ci;
101
102 KASSERT(lwp_locked(l, NULL));
103
104 TAILQ_REMOVE(sq, l, l_sleepchain);
105 l->l_syncobj = &sched_syncobj;
106 l->l_wchan = NULL;
107 l->l_sleepq = NULL;
108 l->l_flag &= ~LW_SINTR;
109
110 ci = l->l_cpu;
111 spc = &ci->ci_schedstate;
112
113 /*
114 * If not sleeping, the LWP must have been suspended. Let whoever
115 * holds it stopped set it running again.
116 */
117 if (l->l_stat != LSSLEEP) {
118 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
119 lwp_setlock(l, spc->spc_lwplock);
120 return 0;
121 }
122
123 /*
124 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
125 * about to call mi_switch(), in which case it will yield.
126 */
127 if ((l->l_pflag & LP_RUNNING) != 0) {
128 l->l_stat = LSONPROC;
129 l->l_slptime = 0;
130 lwp_setlock(l, spc->spc_lwplock);
131 return 0;
132 }
133
134 /* Update sleep time delta, call the wake-up handler of scheduler */
135 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
136 sched_wakeup(l);
137
138 /* Look for a CPU to wake up */
139 l->l_cpu = sched_takecpu(l);
140 ci = l->l_cpu;
141 spc = &ci->ci_schedstate;
142
143 /*
144 * Set it running.
145 */
146 spc_lock(ci);
147 lwp_setlock(l, spc->spc_mutex);
148 sched_setrunnable(l);
149 l->l_stat = LSRUN;
150 l->l_slptime = 0;
151 if ((l->l_flag & LW_INMEM) != 0) {
152 sched_enqueue(l, false);
153 spc_unlock(ci);
154 return 0;
155 }
156 spc_unlock(ci);
157 return 1;
158 }
159
160 /*
161 * sleepq_insert:
162 *
163 * Insert an LWP into the sleep queue, optionally sorting by priority.
164 */
165 inline void
166 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
167 {
168 lwp_t *l2;
169 const int pri = lwp_eprio(l);
170
171 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
172 TAILQ_FOREACH(l2, sq, l_sleepchain) {
173 if (lwp_eprio(l2) < pri) {
174 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
175 return;
176 }
177 }
178 }
179
180 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
181 TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
182 else
183 TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
184 }
185
186 /*
187 * sleepq_enqueue:
188 *
189 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
190 * queue must already be locked, and any interlock (such as the kernel
191 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
192 */
193 void
194 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
195 {
196 lwp_t *l = curlwp;
197
198 KASSERT(lwp_locked(l, NULL));
199 KASSERT(l->l_stat == LSONPROC);
200 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
201
202 l->l_syncobj = sobj;
203 l->l_wchan = wchan;
204 l->l_sleepq = sq;
205 l->l_wmesg = wmesg;
206 l->l_slptime = 0;
207 l->l_stat = LSSLEEP;
208 l->l_sleeperr = 0;
209
210 sleepq_insert(sq, l, sobj);
211
212 /* Save the time when thread has slept */
213 l->l_slpticks = hardclock_ticks;
214 sched_slept(l);
215 }
216
217 /*
218 * sleepq_block:
219 *
220 * After any intermediate step such as releasing an interlock, switch.
221 * sleepq_block() may return early under exceptional conditions, for
222 * example if the LWP's containing process is exiting.
223 */
224 int
225 sleepq_block(int timo, bool catch)
226 {
227 int error = 0, sig;
228 struct proc *p;
229 lwp_t *l = curlwp;
230 bool early = false;
231
232 ktrcsw(1, 0);
233
234 /*
235 * If sleeping interruptably, check for pending signals, exits or
236 * core dump events.
237 */
238 if (catch) {
239 l->l_flag |= LW_SINTR;
240 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
241 l->l_flag &= ~LW_CANCELLED;
242 error = EINTR;
243 early = true;
244 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
245 early = true;
246 }
247
248 if (early) {
249 /* lwp_unsleep() will release the lock */
250 lwp_unsleep(l, true);
251 } else {
252 if (timo)
253 callout_schedule(&l->l_timeout_ch, timo);
254 mi_switch(l);
255
256 /* The LWP and sleep queue are now unlocked. */
257 if (timo) {
258 /*
259 * Even if the callout appears to have fired, we need to
260 * stop it in order to synchronise with other CPUs.
261 */
262 if (callout_halt(&l->l_timeout_ch, NULL))
263 error = EWOULDBLOCK;
264 }
265 }
266
267 if (catch && error == 0) {
268 p = l->l_proc;
269 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
270 error = EINTR;
271 else if ((l->l_flag & LW_PENDSIG) != 0) {
272 /*
273 * Acquiring p_lock may cause us to recurse
274 * through the sleep path and back into this
275 * routine, but is safe because LWPs sleeping
276 * on locks are non-interruptable. We will
277 * not recurse again.
278 */
279 mutex_enter(p->p_lock);
280 if ((sig = issignal(l)) != 0)
281 error = sleepq_sigtoerror(l, sig);
282 mutex_exit(p->p_lock);
283 }
284 }
285
286 ktrcsw(0, 0);
287 if (__predict_false(l->l_biglocks != 0)) {
288 KERNEL_LOCK(l->l_biglocks, NULL);
289 }
290 return error;
291 }
292
293 /*
294 * sleepq_wake:
295 *
296 * Wake zero or more LWPs blocked on a single wait channel.
297 */
298 lwp_t *
299 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
300 {
301 lwp_t *l, *next;
302 int swapin = 0;
303
304 KASSERT(mutex_owned(mp));
305
306 for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
307 KASSERT(l->l_sleepq == sq);
308 KASSERT(l->l_mutex == mp);
309 next = TAILQ_NEXT(l, l_sleepchain);
310 if (l->l_wchan != wchan)
311 continue;
312 swapin |= sleepq_remove(sq, l);
313 if (--expected == 0)
314 break;
315 }
316
317 mutex_spin_exit(mp);
318
319 /*
320 * If there are newly awakend threads that need to be swapped in,
321 * then kick the swapper into action.
322 */
323 if (swapin)
324 uvm_kick_scheduler();
325
326 return l;
327 }
328
329 /*
330 * sleepq_unsleep:
331 *
332 * Remove an LWP from its sleep queue and set it runnable again.
333 * sleepq_unsleep() is called with the LWP's mutex held, and will
334 * always release it.
335 */
336 u_int
337 sleepq_unsleep(lwp_t *l, bool cleanup)
338 {
339 sleepq_t *sq = l->l_sleepq;
340 kmutex_t *mp = l->l_mutex;
341 int swapin;
342
343 KASSERT(lwp_locked(l, mp));
344 KASSERT(l->l_wchan != NULL);
345
346 swapin = sleepq_remove(sq, l);
347
348 if (cleanup) {
349 mutex_spin_exit(mp);
350 if (swapin)
351 uvm_kick_scheduler();
352 }
353
354 return swapin;
355 }
356
357 /*
358 * sleepq_timeout:
359 *
360 * Entered via the callout(9) subsystem to time out an LWP that is on a
361 * sleep queue.
362 */
363 void
364 sleepq_timeout(void *arg)
365 {
366 lwp_t *l = arg;
367
368 /*
369 * Lock the LWP. Assuming it's still on the sleep queue, its
370 * current mutex will also be the sleep queue mutex.
371 */
372 lwp_lock(l);
373
374 if (l->l_wchan == NULL) {
375 /* Somebody beat us to it. */
376 lwp_unlock(l);
377 return;
378 }
379
380 lwp_unsleep(l, true);
381 }
382
383 /*
384 * sleepq_sigtoerror:
385 *
386 * Given a signal number, interpret and return an error code.
387 */
388 int
389 sleepq_sigtoerror(lwp_t *l, int sig)
390 {
391 struct proc *p = l->l_proc;
392 int error;
393
394 KASSERT(mutex_owned(p->p_lock));
395
396 /*
397 * If this sleep was canceled, don't let the syscall restart.
398 */
399 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
400 error = EINTR;
401 else
402 error = ERESTART;
403
404 return error;
405 }
406
407 /*
408 * sleepq_abort:
409 *
410 * After a panic or during autoconfiguration, lower the interrupt
411 * priority level to give pending interrupts a chance to run, and
412 * then return. Called if sleepq_dontsleep() returns non-zero, and
413 * always returns zero.
414 */
415 int
416 sleepq_abort(kmutex_t *mtx, int unlock)
417 {
418 extern int safepri;
419 int s;
420
421 s = splhigh();
422 splx(safepri);
423 splx(s);
424 if (mtx != NULL && unlock != 0)
425 mutex_exit(mtx);
426
427 return 0;
428 }
429
430 /*
431 * sleepq_changepri:
432 *
433 * Adjust the priority of an LWP residing on a sleepq. This method
434 * will only alter the user priority; the effective priority is
435 * assumed to have been fixed at the time of insertion into the queue.
436 */
437 void
438 sleepq_changepri(lwp_t *l, pri_t pri)
439 {
440 sleepq_t *sq = l->l_sleepq;
441 pri_t opri;
442
443 KASSERT(lwp_locked(l, NULL));
444
445 opri = lwp_eprio(l);
446 l->l_priority = pri;
447
448 if (lwp_eprio(l) == opri) {
449 return;
450 }
451 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
452 return;
453 }
454
455 /*
456 * Don't let the sleep queue become empty, even briefly.
457 * cv_signal() and cv_broadcast() inspect it without the
458 * sleep queue lock held and need to see a non-empty queue
459 * head if there are waiters.
460 */
461 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
462 return;
463 }
464 TAILQ_REMOVE(sq, l, l_sleepchain);
465 sleepq_insert(sq, l, l->l_syncobj);
466 }
467
468 void
469 sleepq_lendpri(lwp_t *l, pri_t pri)
470 {
471 sleepq_t *sq = l->l_sleepq;
472 pri_t opri;
473
474 KASSERT(lwp_locked(l, NULL));
475
476 opri = lwp_eprio(l);
477 l->l_inheritedprio = pri;
478
479 if (lwp_eprio(l) == opri) {
480 return;
481 }
482 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
483 return;
484 }
485
486 /*
487 * Don't let the sleep queue become empty, even briefly.
488 * cv_signal() and cv_broadcast() inspect it without the
489 * sleep queue lock held and need to see a non-empty queue
490 * head if there are waiters.
491 */
492 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
493 return;
494 }
495 TAILQ_REMOVE(sq, l, l_sleepchain);
496 sleepq_insert(sq, l, l->l_syncobj);
497 }
498