Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.25.2.2
      1 /*	$NetBSD: kern_sleepq.c,v 1.25.2.2 2008/06/04 02:05:39 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.25.2.2 2008/06/04 02:05:39 yamt Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/pool.h>
     44 #include <sys/proc.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/sched.h>
     47 #include <sys/systm.h>
     48 #include <sys/sleepq.h>
     49 #include <sys/ktrace.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 int	sleepq_sigtoerror(lwp_t *, int);
     54 
     55 /* General purpose sleep table, used by ltsleep() and condition variables. */
     56 sleeptab_t	sleeptab;
     57 
     58 /*
     59  * sleeptab_init:
     60  *
     61  *	Initialize a sleep table.
     62  */
     63 void
     64 sleeptab_init(sleeptab_t *st)
     65 {
     66 	sleepq_t *sq;
     67 	int i;
     68 
     69 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     70 		sq = &st->st_queues[i].st_queue;
     71 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     72 		    IPL_SCHED);
     73 		sleepq_init(sq);
     74 	}
     75 }
     76 
     77 /*
     78  * sleepq_init:
     79  *
     80  *	Prepare a sleep queue for use.
     81  */
     82 void
     83 sleepq_init(sleepq_t *sq)
     84 {
     85 
     86 	TAILQ_INIT(sq);
     87 }
     88 
     89 /*
     90  * sleepq_remove:
     91  *
     92  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     93  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     94  *	to bring the LWP into memory.
     95  */
     96 int
     97 sleepq_remove(sleepq_t *sq, lwp_t *l)
     98 {
     99 	struct schedstate_percpu *spc;
    100 	struct cpu_info *ci;
    101 
    102 	KASSERT(lwp_locked(l, NULL));
    103 
    104 	TAILQ_REMOVE(sq, l, l_sleepchain);
    105 	l->l_syncobj = &sched_syncobj;
    106 	l->l_wchan = NULL;
    107 	l->l_sleepq = NULL;
    108 	l->l_flag &= ~LW_SINTR;
    109 
    110 	ci = l->l_cpu;
    111 	spc = &ci->ci_schedstate;
    112 
    113 	/*
    114 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    115 	 * holds it stopped set it running again.
    116 	 */
    117 	if (l->l_stat != LSSLEEP) {
    118 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    119 		lwp_setlock(l, spc->spc_lwplock);
    120 		return 0;
    121 	}
    122 
    123 	/*
    124 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    125 	 * about to call mi_switch(), in which case it will yield.
    126 	 */
    127 	if ((l->l_pflag & LP_RUNNING) != 0) {
    128 		l->l_stat = LSONPROC;
    129 		l->l_slptime = 0;
    130 		lwp_setlock(l, spc->spc_lwplock);
    131 		return 0;
    132 	}
    133 
    134 	/* Update sleep time delta, call the wake-up handler of scheduler */
    135 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    136 	sched_wakeup(l);
    137 
    138 	/* Look for a CPU to wake up */
    139 	l->l_cpu = sched_takecpu(l);
    140 	ci = l->l_cpu;
    141 	spc = &ci->ci_schedstate;
    142 
    143 	/*
    144 	 * Set it running.
    145 	 */
    146 	spc_lock(ci);
    147 	lwp_setlock(l, spc->spc_mutex);
    148 	sched_setrunnable(l);
    149 	l->l_stat = LSRUN;
    150 	l->l_slptime = 0;
    151 	if ((l->l_flag & LW_INMEM) != 0) {
    152 		sched_enqueue(l, false);
    153 		spc_unlock(ci);
    154 		return 0;
    155 	}
    156 	spc_unlock(ci);
    157 	return 1;
    158 }
    159 
    160 /*
    161  * sleepq_insert:
    162  *
    163  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    164  */
    165 inline void
    166 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    167 {
    168 	lwp_t *l2;
    169 	const int pri = lwp_eprio(l);
    170 
    171 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    172 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    173 			if (lwp_eprio(l2) < pri) {
    174 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    175 				return;
    176 			}
    177 		}
    178 	}
    179 
    180 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    181 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    182 	else
    183 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    184 }
    185 
    186 /*
    187  * sleepq_enqueue:
    188  *
    189  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    190  *	queue must already be locked, and any interlock (such as the kernel
    191  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    192  */
    193 void
    194 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    195 {
    196 	lwp_t *l = curlwp;
    197 
    198 	KASSERT(lwp_locked(l, NULL));
    199 	KASSERT(l->l_stat == LSONPROC);
    200 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    201 
    202 	l->l_syncobj = sobj;
    203 	l->l_wchan = wchan;
    204 	l->l_sleepq = sq;
    205 	l->l_wmesg = wmesg;
    206 	l->l_slptime = 0;
    207 	l->l_stat = LSSLEEP;
    208 	l->l_sleeperr = 0;
    209 
    210 	sleepq_insert(sq, l, sobj);
    211 
    212 	/* Save the time when thread has slept */
    213 	l->l_slpticks = hardclock_ticks;
    214 	sched_slept(l);
    215 }
    216 
    217 /*
    218  * sleepq_block:
    219  *
    220  *	After any intermediate step such as releasing an interlock, switch.
    221  * 	sleepq_block() may return early under exceptional conditions, for
    222  * 	example if the LWP's containing process is exiting.
    223  */
    224 int
    225 sleepq_block(int timo, bool catch)
    226 {
    227 	int error = 0, sig;
    228 	struct proc *p;
    229 	lwp_t *l = curlwp;
    230 	bool early = false;
    231 
    232 	ktrcsw(1, 0);
    233 
    234 	/*
    235 	 * If sleeping interruptably, check for pending signals, exits or
    236 	 * core dump events.
    237 	 */
    238 	if (catch) {
    239 		l->l_flag |= LW_SINTR;
    240 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    241 			l->l_flag &= ~LW_CANCELLED;
    242 			error = EINTR;
    243 			early = true;
    244 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    245 			early = true;
    246 	}
    247 
    248 	if (early) {
    249 		/* lwp_unsleep() will release the lock */
    250 		lwp_unsleep(l, true);
    251 	} else {
    252 		if (timo)
    253 			callout_schedule(&l->l_timeout_ch, timo);
    254 		mi_switch(l);
    255 
    256 		/* The LWP and sleep queue are now unlocked. */
    257 		if (timo) {
    258 			/*
    259 			 * Even if the callout appears to have fired, we need to
    260 			 * stop it in order to synchronise with other CPUs.
    261 			 */
    262 			if (callout_halt(&l->l_timeout_ch, NULL))
    263 				error = EWOULDBLOCK;
    264 		}
    265 	}
    266 
    267 	if (catch && error == 0) {
    268 		p = l->l_proc;
    269 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    270 			error = EINTR;
    271 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    272 			mutex_enter(p->p_lock);
    273 			if ((sig = issignal(l)) != 0)
    274 				error = sleepq_sigtoerror(l, sig);
    275 			mutex_exit(p->p_lock);
    276 		}
    277 	}
    278 
    279 	ktrcsw(0, 0);
    280 	if (__predict_false(l->l_biglocks != 0)) {
    281 		KERNEL_LOCK(l->l_biglocks, NULL);
    282 	}
    283 	return error;
    284 }
    285 
    286 /*
    287  * sleepq_wake:
    288  *
    289  *	Wake zero or more LWPs blocked on a single wait channel.
    290  */
    291 lwp_t *
    292 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    293 {
    294 	lwp_t *l, *next;
    295 	int swapin = 0;
    296 
    297 	KASSERT(mutex_owned(mp));
    298 
    299 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    300 		KASSERT(l->l_sleepq == sq);
    301 		KASSERT(l->l_mutex == mp);
    302 		next = TAILQ_NEXT(l, l_sleepchain);
    303 		if (l->l_wchan != wchan)
    304 			continue;
    305 		swapin |= sleepq_remove(sq, l);
    306 		if (--expected == 0)
    307 			break;
    308 	}
    309 
    310 	mutex_spin_exit(mp);
    311 
    312 	/*
    313 	 * If there are newly awakend threads that need to be swapped in,
    314 	 * then kick the swapper into action.
    315 	 */
    316 	if (swapin)
    317 		uvm_kick_scheduler();
    318 
    319 	return l;
    320 }
    321 
    322 /*
    323  * sleepq_unsleep:
    324  *
    325  *	Remove an LWP from its sleep queue and set it runnable again.
    326  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    327  *	always release it.
    328  */
    329 u_int
    330 sleepq_unsleep(lwp_t *l, bool cleanup)
    331 {
    332 	sleepq_t *sq = l->l_sleepq;
    333 	kmutex_t *mp = l->l_mutex;
    334 	int swapin;
    335 
    336 	KASSERT(lwp_locked(l, mp));
    337 	KASSERT(l->l_wchan != NULL);
    338 
    339 	swapin = sleepq_remove(sq, l);
    340 
    341 	if (cleanup) {
    342 		mutex_spin_exit(mp);
    343 		if (swapin)
    344 			uvm_kick_scheduler();
    345 	}
    346 
    347 	return swapin;
    348 }
    349 
    350 /*
    351  * sleepq_timeout:
    352  *
    353  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    354  *	sleep queue.
    355  */
    356 void
    357 sleepq_timeout(void *arg)
    358 {
    359 	lwp_t *l = arg;
    360 
    361 	/*
    362 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    363 	 * current mutex will also be the sleep queue mutex.
    364 	 */
    365 	lwp_lock(l);
    366 
    367 	if (l->l_wchan == NULL) {
    368 		/* Somebody beat us to it. */
    369 		lwp_unlock(l);
    370 		return;
    371 	}
    372 
    373 	lwp_unsleep(l, true);
    374 }
    375 
    376 /*
    377  * sleepq_sigtoerror:
    378  *
    379  *	Given a signal number, interpret and return an error code.
    380  */
    381 int
    382 sleepq_sigtoerror(lwp_t *l, int sig)
    383 {
    384 	struct proc *p = l->l_proc;
    385 	int error;
    386 
    387 	KASSERT(mutex_owned(p->p_lock));
    388 
    389 	/*
    390 	 * If this sleep was canceled, don't let the syscall restart.
    391 	 */
    392 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    393 		error = EINTR;
    394 	else
    395 		error = ERESTART;
    396 
    397 	return error;
    398 }
    399 
    400 /*
    401  * sleepq_abort:
    402  *
    403  *	After a panic or during autoconfiguration, lower the interrupt
    404  *	priority level to give pending interrupts a chance to run, and
    405  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    406  *	always returns zero.
    407  */
    408 int
    409 sleepq_abort(kmutex_t *mtx, int unlock)
    410 {
    411 	extern int safepri;
    412 	int s;
    413 
    414 	s = splhigh();
    415 	splx(safepri);
    416 	splx(s);
    417 	if (mtx != NULL && unlock != 0)
    418 		mutex_exit(mtx);
    419 
    420 	return 0;
    421 }
    422 
    423 /*
    424  * sleepq_changepri:
    425  *
    426  *	Adjust the priority of an LWP residing on a sleepq.  This method
    427  *	will only alter the user priority; the effective priority is
    428  *	assumed to have been fixed at the time of insertion into the queue.
    429  */
    430 void
    431 sleepq_changepri(lwp_t *l, pri_t pri)
    432 {
    433 	sleepq_t *sq = l->l_sleepq;
    434 	pri_t opri;
    435 
    436 	KASSERT(lwp_locked(l, NULL));
    437 
    438 	opri = lwp_eprio(l);
    439 	l->l_priority = pri;
    440 	if (lwp_eprio(l) != opri) {
    441 		TAILQ_REMOVE(sq, l, l_sleepchain);
    442 		sleepq_insert(sq, l, l->l_syncobj);
    443 	}
    444 }
    445 
    446 void
    447 sleepq_lendpri(lwp_t *l, pri_t pri)
    448 {
    449 	sleepq_t *sq = l->l_sleepq;
    450 	pri_t opri;
    451 
    452 	KASSERT(lwp_locked(l, NULL));
    453 
    454 	opri = lwp_eprio(l);
    455 	l->l_inheritedprio = pri;
    456 
    457 	if (lwp_eprio(l) != opri &&
    458 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    459 		TAILQ_REMOVE(sq, l, l_sleepchain);
    460 		sleepq_insert(sq, l, l->l_syncobj);
    461 	}
    462 }
    463