kern_sleepq.c revision 1.27 1 /* $NetBSD: kern_sleepq.c,v 1.27 2008/04/24 18:39:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27 2008/04/24 18:39:24 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/cpu.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/systm.h>
55 #include <sys/sleepq.h>
56 #include <sys/ktrace.h>
57
58 #include <uvm/uvm_extern.h>
59
60 int sleepq_sigtoerror(lwp_t *, int);
61
62 /* General purpose sleep table, used by ltsleep() and condition variables. */
63 sleeptab_t sleeptab;
64
65 /*
66 * sleeptab_init:
67 *
68 * Initialize a sleep table.
69 */
70 void
71 sleeptab_init(sleeptab_t *st)
72 {
73 sleepq_t *sq;
74 int i;
75
76 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
77 sq = &st->st_queues[i].st_queue;
78 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
79 IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110
111 KASSERT(lwp_locked(l, sq->sq_mutex));
112 KASSERT(sq->sq_waiters > 0);
113
114 sq->sq_waiters--;
115 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
116
117 #ifdef DIAGNOSTIC
118 if (sq->sq_waiters == 0)
119 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
120 else
121 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
122 #endif
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, spc->spc_lwplock);
139 return 0;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_flag & LW_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, spc->spc_lwplock);
150 return 0;
151 }
152
153 /*
154 * Call the wake-up handler of scheduler.
155 * It might change the CPU for this thread.
156 */
157 sched_wakeup(l);
158 ci = l->l_cpu;
159 spc = &ci->ci_schedstate;
160
161 /*
162 * Set it running.
163 */
164 spc_lock(ci);
165 lwp_setlock(l, spc->spc_mutex);
166 sched_setrunnable(l);
167 l->l_stat = LSRUN;
168 l->l_slptime = 0;
169 if ((l->l_flag & LW_INMEM) != 0) {
170 sched_enqueue(l, false);
171 spc_unlock(ci);
172 return 0;
173 }
174 spc_unlock(ci);
175 return 1;
176 }
177
178 /*
179 * sleepq_insert:
180 *
181 * Insert an LWP into the sleep queue, optionally sorting by priority.
182 */
183 inline void
184 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
185 {
186 lwp_t *l2;
187 const int pri = lwp_eprio(l);
188
189 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
190 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
191 if (lwp_eprio(l2) < pri) {
192 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
193 return;
194 }
195 }
196 }
197
198 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
199 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
200 else
201 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
202 }
203
204 /*
205 * sleepq_enqueue:
206 *
207 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
208 * queue must already be locked, and any interlock (such as the kernel
209 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
210 */
211 void
212 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
213 {
214 lwp_t *l = curlwp;
215
216 KASSERT(lwp_locked(l, sq->sq_mutex));
217 KASSERT(l->l_stat == LSONPROC);
218 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
219
220 l->l_syncobj = sobj;
221 l->l_wchan = wchan;
222 l->l_sleepq = sq;
223 l->l_wmesg = wmesg;
224 l->l_slptime = 0;
225 l->l_stat = LSSLEEP;
226 l->l_sleeperr = 0;
227
228 sq->sq_waiters++;
229 sleepq_insert(sq, l, sobj);
230 sched_slept(l);
231 }
232
233 /*
234 * sleepq_block:
235 *
236 * After any intermediate step such as releasing an interlock, switch.
237 * sleepq_block() may return early under exceptional conditions, for
238 * example if the LWP's containing process is exiting.
239 */
240 int
241 sleepq_block(int timo, bool catch)
242 {
243 int error = 0, sig;
244 struct proc *p;
245 lwp_t *l = curlwp;
246 bool early = false;
247
248 ktrcsw(1, 0);
249
250 /*
251 * If sleeping interruptably, check for pending signals, exits or
252 * core dump events.
253 */
254 if (catch) {
255 l->l_flag |= LW_SINTR;
256 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
257 l->l_flag &= ~LW_CANCELLED;
258 error = EINTR;
259 early = true;
260 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
261 early = true;
262 }
263
264 if (early) {
265 /* lwp_unsleep() will release the lock */
266 lwp_unsleep(l, true);
267 } else {
268 if (timo)
269 callout_schedule(&l->l_timeout_ch, timo);
270 mi_switch(l);
271
272 /* The LWP and sleep queue are now unlocked. */
273 if (timo) {
274 /*
275 * Even if the callout appears to have fired, we need to
276 * stop it in order to synchronise with other CPUs.
277 */
278 if (callout_halt(&l->l_timeout_ch, NULL))
279 error = EWOULDBLOCK;
280 }
281 }
282
283 if (catch && error == 0) {
284 p = l->l_proc;
285 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
286 error = EINTR;
287 else if ((l->l_flag & LW_PENDSIG) != 0) {
288 mutex_enter(p->p_lock);
289 if ((sig = issignal(l)) != 0)
290 error = sleepq_sigtoerror(l, sig);
291 mutex_exit(p->p_lock);
292 }
293 }
294
295 ktrcsw(0, 0);
296
297 KERNEL_LOCK(l->l_biglocks, l);
298 return error;
299 }
300
301 /*
302 * sleepq_wake:
303 *
304 * Wake zero or more LWPs blocked on a single wait channel.
305 */
306 lwp_t *
307 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
308 {
309 lwp_t *l, *next;
310 int swapin = 0;
311
312 KASSERT(mutex_owned(sq->sq_mutex));
313
314 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
315 KASSERT(l->l_sleepq == sq);
316 KASSERT(l->l_mutex == sq->sq_mutex);
317 next = TAILQ_NEXT(l, l_sleepchain);
318 if (l->l_wchan != wchan)
319 continue;
320 swapin |= sleepq_remove(sq, l);
321 if (--expected == 0)
322 break;
323 }
324
325 sleepq_unlock(sq);
326
327 /*
328 * If there are newly awakend threads that need to be swapped in,
329 * then kick the swapper into action.
330 */
331 if (swapin)
332 uvm_kick_scheduler();
333
334 return l;
335 }
336
337 /*
338 * sleepq_unsleep:
339 *
340 * Remove an LWP from its sleep queue and set it runnable again.
341 * sleepq_unsleep() is called with the LWP's mutex held, and will
342 * always release it.
343 */
344 u_int
345 sleepq_unsleep(lwp_t *l, bool cleanup)
346 {
347 sleepq_t *sq = l->l_sleepq;
348 int swapin;
349
350 KASSERT(lwp_locked(l, sq->sq_mutex));
351 KASSERT(l->l_wchan != NULL);
352
353 swapin = sleepq_remove(sq, l);
354
355 if (cleanup) {
356 sleepq_unlock(sq);
357 if (swapin)
358 uvm_kick_scheduler();
359 }
360
361 return swapin;
362 }
363
364 /*
365 * sleepq_timeout:
366 *
367 * Entered via the callout(9) subsystem to time out an LWP that is on a
368 * sleep queue.
369 */
370 void
371 sleepq_timeout(void *arg)
372 {
373 lwp_t *l = arg;
374
375 /*
376 * Lock the LWP. Assuming it's still on the sleep queue, its
377 * current mutex will also be the sleep queue mutex.
378 */
379 lwp_lock(l);
380
381 if (l->l_wchan == NULL) {
382 /* Somebody beat us to it. */
383 lwp_unlock(l);
384 return;
385 }
386
387 lwp_unsleep(l, true);
388 }
389
390 /*
391 * sleepq_sigtoerror:
392 *
393 * Given a signal number, interpret and return an error code.
394 */
395 int
396 sleepq_sigtoerror(lwp_t *l, int sig)
397 {
398 struct proc *p = l->l_proc;
399 int error;
400
401 KASSERT(mutex_owned(p->p_lock));
402
403 /*
404 * If this sleep was canceled, don't let the syscall restart.
405 */
406 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
407 error = EINTR;
408 else
409 error = ERESTART;
410
411 return error;
412 }
413
414 /*
415 * sleepq_abort:
416 *
417 * After a panic or during autoconfiguration, lower the interrupt
418 * priority level to give pending interrupts a chance to run, and
419 * then return. Called if sleepq_dontsleep() returns non-zero, and
420 * always returns zero.
421 */
422 int
423 sleepq_abort(kmutex_t *mtx, int unlock)
424 {
425 extern int safepri;
426 int s;
427
428 s = splhigh();
429 splx(safepri);
430 splx(s);
431 if (mtx != NULL && unlock != 0)
432 mutex_exit(mtx);
433
434 return 0;
435 }
436
437 /*
438 * sleepq_changepri:
439 *
440 * Adjust the priority of an LWP residing on a sleepq. This method
441 * will only alter the user priority; the effective priority is
442 * assumed to have been fixed at the time of insertion into the queue.
443 */
444 void
445 sleepq_changepri(lwp_t *l, pri_t pri)
446 {
447 sleepq_t *sq = l->l_sleepq;
448 pri_t opri;
449
450 KASSERT(lwp_locked(l, sq->sq_mutex));
451
452 opri = lwp_eprio(l);
453 l->l_priority = pri;
454 if (lwp_eprio(l) != opri) {
455 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
456 sleepq_insert(sq, l, l->l_syncobj);
457 }
458 }
459
460 void
461 sleepq_lendpri(lwp_t *l, pri_t pri)
462 {
463 sleepq_t *sq = l->l_sleepq;
464 pri_t opri;
465
466 KASSERT(lwp_locked(l, sq->sq_mutex));
467
468 opri = lwp_eprio(l);
469 l->l_inheritedprio = pri;
470
471 if (lwp_eprio(l) != opri &&
472 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
473 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
474 sleepq_insert(sq, l, l->l_syncobj);
475 }
476 }
477