Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.27
      1 /*	$NetBSD: kern_sleepq.c,v 1.27 2008/04/24 18:39:24 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27 2008/04/24 18:39:24 ad Exp $");
     46 
     47 #include <sys/param.h>
     48 #include <sys/kernel.h>
     49 #include <sys/cpu.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/resourcevar.h>
     53 #include <sys/sched.h>
     54 #include <sys/systm.h>
     55 #include <sys/sleepq.h>
     56 #include <sys/ktrace.h>
     57 
     58 #include <uvm/uvm_extern.h>
     59 
     60 int	sleepq_sigtoerror(lwp_t *, int);
     61 
     62 /* General purpose sleep table, used by ltsleep() and condition variables. */
     63 sleeptab_t	sleeptab;
     64 
     65 /*
     66  * sleeptab_init:
     67  *
     68  *	Initialize a sleep table.
     69  */
     70 void
     71 sleeptab_init(sleeptab_t *st)
     72 {
     73 	sleepq_t *sq;
     74 	int i;
     75 
     76 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     77 		sq = &st->st_queues[i].st_queue;
     78 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     79 		    IPL_SCHED);
     80 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     81 	}
     82 }
     83 
     84 /*
     85  * sleepq_init:
     86  *
     87  *	Prepare a sleep queue for use.
     88  */
     89 void
     90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     91 {
     92 
     93 	sq->sq_waiters = 0;
     94 	sq->sq_mutex = mtx;
     95 	TAILQ_INIT(&sq->sq_queue);
     96 }
     97 
     98 /*
     99  * sleepq_remove:
    100  *
    101  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    102  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    103  *	to bring the LWP into memory.
    104  */
    105 int
    106 sleepq_remove(sleepq_t *sq, lwp_t *l)
    107 {
    108 	struct schedstate_percpu *spc;
    109 	struct cpu_info *ci;
    110 
    111 	KASSERT(lwp_locked(l, sq->sq_mutex));
    112 	KASSERT(sq->sq_waiters > 0);
    113 
    114 	sq->sq_waiters--;
    115 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    116 
    117 #ifdef DIAGNOSTIC
    118 	if (sq->sq_waiters == 0)
    119 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    120 	else
    121 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    122 #endif
    123 
    124 	l->l_syncobj = &sched_syncobj;
    125 	l->l_wchan = NULL;
    126 	l->l_sleepq = NULL;
    127 	l->l_flag &= ~LW_SINTR;
    128 
    129 	ci = l->l_cpu;
    130 	spc = &ci->ci_schedstate;
    131 
    132 	/*
    133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134 	 * holds it stopped set it running again.
    135 	 */
    136 	if (l->l_stat != LSSLEEP) {
    137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138 		lwp_setlock(l, spc->spc_lwplock);
    139 		return 0;
    140 	}
    141 
    142 	/*
    143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144 	 * about to call mi_switch(), in which case it will yield.
    145 	 */
    146 	if ((l->l_flag & LW_RUNNING) != 0) {
    147 		l->l_stat = LSONPROC;
    148 		l->l_slptime = 0;
    149 		lwp_setlock(l, spc->spc_lwplock);
    150 		return 0;
    151 	}
    152 
    153 	/*
    154 	 * Call the wake-up handler of scheduler.
    155 	 * It might change the CPU for this thread.
    156 	 */
    157 	sched_wakeup(l);
    158 	ci = l->l_cpu;
    159 	spc = &ci->ci_schedstate;
    160 
    161 	/*
    162 	 * Set it running.
    163 	 */
    164 	spc_lock(ci);
    165 	lwp_setlock(l, spc->spc_mutex);
    166 	sched_setrunnable(l);
    167 	l->l_stat = LSRUN;
    168 	l->l_slptime = 0;
    169 	if ((l->l_flag & LW_INMEM) != 0) {
    170 		sched_enqueue(l, false);
    171 		spc_unlock(ci);
    172 		return 0;
    173 	}
    174 	spc_unlock(ci);
    175 	return 1;
    176 }
    177 
    178 /*
    179  * sleepq_insert:
    180  *
    181  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    182  */
    183 inline void
    184 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    185 {
    186 	lwp_t *l2;
    187 	const int pri = lwp_eprio(l);
    188 
    189 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    190 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    191 			if (lwp_eprio(l2) < pri) {
    192 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    193 				return;
    194 			}
    195 		}
    196 	}
    197 
    198 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    199 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    200 	else
    201 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    202 }
    203 
    204 /*
    205  * sleepq_enqueue:
    206  *
    207  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    208  *	queue must already be locked, and any interlock (such as the kernel
    209  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    210  */
    211 void
    212 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    213 {
    214 	lwp_t *l = curlwp;
    215 
    216 	KASSERT(lwp_locked(l, sq->sq_mutex));
    217 	KASSERT(l->l_stat == LSONPROC);
    218 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    219 
    220 	l->l_syncobj = sobj;
    221 	l->l_wchan = wchan;
    222 	l->l_sleepq = sq;
    223 	l->l_wmesg = wmesg;
    224 	l->l_slptime = 0;
    225 	l->l_stat = LSSLEEP;
    226 	l->l_sleeperr = 0;
    227 
    228 	sq->sq_waiters++;
    229 	sleepq_insert(sq, l, sobj);
    230 	sched_slept(l);
    231 }
    232 
    233 /*
    234  * sleepq_block:
    235  *
    236  *	After any intermediate step such as releasing an interlock, switch.
    237  * 	sleepq_block() may return early under exceptional conditions, for
    238  * 	example if the LWP's containing process is exiting.
    239  */
    240 int
    241 sleepq_block(int timo, bool catch)
    242 {
    243 	int error = 0, sig;
    244 	struct proc *p;
    245 	lwp_t *l = curlwp;
    246 	bool early = false;
    247 
    248 	ktrcsw(1, 0);
    249 
    250 	/*
    251 	 * If sleeping interruptably, check for pending signals, exits or
    252 	 * core dump events.
    253 	 */
    254 	if (catch) {
    255 		l->l_flag |= LW_SINTR;
    256 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    257 			l->l_flag &= ~LW_CANCELLED;
    258 			error = EINTR;
    259 			early = true;
    260 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    261 			early = true;
    262 	}
    263 
    264 	if (early) {
    265 		/* lwp_unsleep() will release the lock */
    266 		lwp_unsleep(l, true);
    267 	} else {
    268 		if (timo)
    269 			callout_schedule(&l->l_timeout_ch, timo);
    270 		mi_switch(l);
    271 
    272 		/* The LWP and sleep queue are now unlocked. */
    273 		if (timo) {
    274 			/*
    275 			 * Even if the callout appears to have fired, we need to
    276 			 * stop it in order to synchronise with other CPUs.
    277 			 */
    278 			if (callout_halt(&l->l_timeout_ch, NULL))
    279 				error = EWOULDBLOCK;
    280 		}
    281 	}
    282 
    283 	if (catch && error == 0) {
    284 		p = l->l_proc;
    285 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    286 			error = EINTR;
    287 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    288 			mutex_enter(p->p_lock);
    289 			if ((sig = issignal(l)) != 0)
    290 				error = sleepq_sigtoerror(l, sig);
    291 			mutex_exit(p->p_lock);
    292 		}
    293 	}
    294 
    295 	ktrcsw(0, 0);
    296 
    297 	KERNEL_LOCK(l->l_biglocks, l);
    298 	return error;
    299 }
    300 
    301 /*
    302  * sleepq_wake:
    303  *
    304  *	Wake zero or more LWPs blocked on a single wait channel.
    305  */
    306 lwp_t *
    307 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    308 {
    309 	lwp_t *l, *next;
    310 	int swapin = 0;
    311 
    312 	KASSERT(mutex_owned(sq->sq_mutex));
    313 
    314 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    315 		KASSERT(l->l_sleepq == sq);
    316 		KASSERT(l->l_mutex == sq->sq_mutex);
    317 		next = TAILQ_NEXT(l, l_sleepchain);
    318 		if (l->l_wchan != wchan)
    319 			continue;
    320 		swapin |= sleepq_remove(sq, l);
    321 		if (--expected == 0)
    322 			break;
    323 	}
    324 
    325 	sleepq_unlock(sq);
    326 
    327 	/*
    328 	 * If there are newly awakend threads that need to be swapped in,
    329 	 * then kick the swapper into action.
    330 	 */
    331 	if (swapin)
    332 		uvm_kick_scheduler();
    333 
    334 	return l;
    335 }
    336 
    337 /*
    338  * sleepq_unsleep:
    339  *
    340  *	Remove an LWP from its sleep queue and set it runnable again.
    341  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    342  *	always release it.
    343  */
    344 u_int
    345 sleepq_unsleep(lwp_t *l, bool cleanup)
    346 {
    347 	sleepq_t *sq = l->l_sleepq;
    348 	int swapin;
    349 
    350 	KASSERT(lwp_locked(l, sq->sq_mutex));
    351 	KASSERT(l->l_wchan != NULL);
    352 
    353 	swapin = sleepq_remove(sq, l);
    354 
    355 	if (cleanup) {
    356 		sleepq_unlock(sq);
    357 		if (swapin)
    358 			uvm_kick_scheduler();
    359 	}
    360 
    361 	return swapin;
    362 }
    363 
    364 /*
    365  * sleepq_timeout:
    366  *
    367  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    368  *	sleep queue.
    369  */
    370 void
    371 sleepq_timeout(void *arg)
    372 {
    373 	lwp_t *l = arg;
    374 
    375 	/*
    376 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    377 	 * current mutex will also be the sleep queue mutex.
    378 	 */
    379 	lwp_lock(l);
    380 
    381 	if (l->l_wchan == NULL) {
    382 		/* Somebody beat us to it. */
    383 		lwp_unlock(l);
    384 		return;
    385 	}
    386 
    387 	lwp_unsleep(l, true);
    388 }
    389 
    390 /*
    391  * sleepq_sigtoerror:
    392  *
    393  *	Given a signal number, interpret and return an error code.
    394  */
    395 int
    396 sleepq_sigtoerror(lwp_t *l, int sig)
    397 {
    398 	struct proc *p = l->l_proc;
    399 	int error;
    400 
    401 	KASSERT(mutex_owned(p->p_lock));
    402 
    403 	/*
    404 	 * If this sleep was canceled, don't let the syscall restart.
    405 	 */
    406 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    407 		error = EINTR;
    408 	else
    409 		error = ERESTART;
    410 
    411 	return error;
    412 }
    413 
    414 /*
    415  * sleepq_abort:
    416  *
    417  *	After a panic or during autoconfiguration, lower the interrupt
    418  *	priority level to give pending interrupts a chance to run, and
    419  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    420  *	always returns zero.
    421  */
    422 int
    423 sleepq_abort(kmutex_t *mtx, int unlock)
    424 {
    425 	extern int safepri;
    426 	int s;
    427 
    428 	s = splhigh();
    429 	splx(safepri);
    430 	splx(s);
    431 	if (mtx != NULL && unlock != 0)
    432 		mutex_exit(mtx);
    433 
    434 	return 0;
    435 }
    436 
    437 /*
    438  * sleepq_changepri:
    439  *
    440  *	Adjust the priority of an LWP residing on a sleepq.  This method
    441  *	will only alter the user priority; the effective priority is
    442  *	assumed to have been fixed at the time of insertion into the queue.
    443  */
    444 void
    445 sleepq_changepri(lwp_t *l, pri_t pri)
    446 {
    447 	sleepq_t *sq = l->l_sleepq;
    448 	pri_t opri;
    449 
    450 	KASSERT(lwp_locked(l, sq->sq_mutex));
    451 
    452 	opri = lwp_eprio(l);
    453 	l->l_priority = pri;
    454 	if (lwp_eprio(l) != opri) {
    455 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    456 		sleepq_insert(sq, l, l->l_syncobj);
    457 	}
    458 }
    459 
    460 void
    461 sleepq_lendpri(lwp_t *l, pri_t pri)
    462 {
    463 	sleepq_t *sq = l->l_sleepq;
    464 	pri_t opri;
    465 
    466 	KASSERT(lwp_locked(l, sq->sq_mutex));
    467 
    468 	opri = lwp_eprio(l);
    469 	l->l_inheritedprio = pri;
    470 
    471 	if (lwp_eprio(l) != opri &&
    472 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    473 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    474 		sleepq_insert(sq, l, l->l_syncobj);
    475 	}
    476 }
    477