Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.27.2.1
      1 /*	$NetBSD: kern_sleepq.c,v 1.27.2.1 2008/05/16 02:25:25 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.27.2.1 2008/05/16 02:25:25 yamt Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/pool.h>
     44 #include <sys/proc.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/sched.h>
     47 #include <sys/systm.h>
     48 #include <sys/sleepq.h>
     49 #include <sys/ktrace.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 int	sleepq_sigtoerror(lwp_t *, int);
     54 
     55 /* General purpose sleep table, used by ltsleep() and condition variables. */
     56 sleeptab_t	sleeptab;
     57 
     58 /*
     59  * sleeptab_init:
     60  *
     61  *	Initialize a sleep table.
     62  */
     63 void
     64 sleeptab_init(sleeptab_t *st)
     65 {
     66 	sleepq_t *sq;
     67 	int i;
     68 
     69 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     70 		sq = &st->st_queues[i].st_queue;
     71 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     72 		    IPL_SCHED);
     73 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     74 	}
     75 }
     76 
     77 /*
     78  * sleepq_init:
     79  *
     80  *	Prepare a sleep queue for use.
     81  */
     82 void
     83 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     84 {
     85 
     86 	sq->sq_waiters = 0;
     87 	sq->sq_mutex = mtx;
     88 	TAILQ_INIT(&sq->sq_queue);
     89 }
     90 
     91 /*
     92  * sleepq_remove:
     93  *
     94  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     95  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     96  *	to bring the LWP into memory.
     97  */
     98 int
     99 sleepq_remove(sleepq_t *sq, lwp_t *l)
    100 {
    101 	struct schedstate_percpu *spc;
    102 	struct cpu_info *ci;
    103 
    104 	KASSERT(lwp_locked(l, sq->sq_mutex));
    105 	KASSERT(sq->sq_waiters > 0);
    106 
    107 	sq->sq_waiters--;
    108 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    109 
    110 #ifdef DIAGNOSTIC
    111 	if (sq->sq_waiters == 0)
    112 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    113 	else
    114 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    115 #endif
    116 
    117 	l->l_syncobj = &sched_syncobj;
    118 	l->l_wchan = NULL;
    119 	l->l_sleepq = NULL;
    120 	l->l_flag &= ~LW_SINTR;
    121 
    122 	ci = l->l_cpu;
    123 	spc = &ci->ci_schedstate;
    124 
    125 	/*
    126 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    127 	 * holds it stopped set it running again.
    128 	 */
    129 	if (l->l_stat != LSSLEEP) {
    130 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    131 		lwp_setlock(l, spc->spc_lwplock);
    132 		return 0;
    133 	}
    134 
    135 	/*
    136 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    137 	 * about to call mi_switch(), in which case it will yield.
    138 	 */
    139 	if ((l->l_flag & LW_RUNNING) != 0) {
    140 		l->l_stat = LSONPROC;
    141 		l->l_slptime = 0;
    142 		lwp_setlock(l, spc->spc_lwplock);
    143 		return 0;
    144 	}
    145 
    146 	/*
    147 	 * Call the wake-up handler of scheduler.
    148 	 * It might change the CPU for this thread.
    149 	 */
    150 	sched_wakeup(l);
    151 	ci = l->l_cpu;
    152 	spc = &ci->ci_schedstate;
    153 
    154 	/*
    155 	 * Set it running.
    156 	 */
    157 	spc_lock(ci);
    158 	lwp_setlock(l, spc->spc_mutex);
    159 	sched_setrunnable(l);
    160 	l->l_stat = LSRUN;
    161 	l->l_slptime = 0;
    162 	if ((l->l_flag & LW_INMEM) != 0) {
    163 		sched_enqueue(l, false);
    164 		spc_unlock(ci);
    165 		return 0;
    166 	}
    167 	spc_unlock(ci);
    168 	return 1;
    169 }
    170 
    171 /*
    172  * sleepq_insert:
    173  *
    174  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    175  */
    176 inline void
    177 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    178 {
    179 	lwp_t *l2;
    180 	const int pri = lwp_eprio(l);
    181 
    182 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    183 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    184 			if (lwp_eprio(l2) < pri) {
    185 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    186 				return;
    187 			}
    188 		}
    189 	}
    190 
    191 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    192 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    193 	else
    194 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    195 }
    196 
    197 /*
    198  * sleepq_enqueue:
    199  *
    200  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    201  *	queue must already be locked, and any interlock (such as the kernel
    202  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    203  */
    204 void
    205 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    206 {
    207 	lwp_t *l = curlwp;
    208 
    209 	KASSERT(lwp_locked(l, sq->sq_mutex));
    210 	KASSERT(l->l_stat == LSONPROC);
    211 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    212 
    213 	l->l_syncobj = sobj;
    214 	l->l_wchan = wchan;
    215 	l->l_sleepq = sq;
    216 	l->l_wmesg = wmesg;
    217 	l->l_slptime = 0;
    218 	l->l_stat = LSSLEEP;
    219 	l->l_sleeperr = 0;
    220 
    221 	sq->sq_waiters++;
    222 	sleepq_insert(sq, l, sobj);
    223 	sched_slept(l);
    224 }
    225 
    226 /*
    227  * sleepq_block:
    228  *
    229  *	After any intermediate step such as releasing an interlock, switch.
    230  * 	sleepq_block() may return early under exceptional conditions, for
    231  * 	example if the LWP's containing process is exiting.
    232  */
    233 int
    234 sleepq_block(int timo, bool catch)
    235 {
    236 	int error = 0, sig;
    237 	struct proc *p;
    238 	lwp_t *l = curlwp;
    239 	bool early = false;
    240 
    241 	ktrcsw(1, 0);
    242 
    243 	/*
    244 	 * If sleeping interruptably, check for pending signals, exits or
    245 	 * core dump events.
    246 	 */
    247 	if (catch) {
    248 		l->l_flag |= LW_SINTR;
    249 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250 			l->l_flag &= ~LW_CANCELLED;
    251 			error = EINTR;
    252 			early = true;
    253 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254 			early = true;
    255 	}
    256 
    257 	if (early) {
    258 		/* lwp_unsleep() will release the lock */
    259 		lwp_unsleep(l, true);
    260 	} else {
    261 		if (timo)
    262 			callout_schedule(&l->l_timeout_ch, timo);
    263 		mi_switch(l);
    264 
    265 		/* The LWP and sleep queue are now unlocked. */
    266 		if (timo) {
    267 			/*
    268 			 * Even if the callout appears to have fired, we need to
    269 			 * stop it in order to synchronise with other CPUs.
    270 			 */
    271 			if (callout_halt(&l->l_timeout_ch, NULL))
    272 				error = EWOULDBLOCK;
    273 		}
    274 	}
    275 
    276 	if (catch && error == 0) {
    277 		p = l->l_proc;
    278 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    279 			error = EINTR;
    280 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    281 			mutex_enter(p->p_lock);
    282 			if ((sig = issignal(l)) != 0)
    283 				error = sleepq_sigtoerror(l, sig);
    284 			mutex_exit(p->p_lock);
    285 		}
    286 	}
    287 
    288 	ktrcsw(0, 0);
    289 
    290 	KERNEL_LOCK(l->l_biglocks, l);
    291 	return error;
    292 }
    293 
    294 /*
    295  * sleepq_wake:
    296  *
    297  *	Wake zero or more LWPs blocked on a single wait channel.
    298  */
    299 lwp_t *
    300 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    301 {
    302 	lwp_t *l, *next;
    303 	int swapin = 0;
    304 
    305 	KASSERT(mutex_owned(sq->sq_mutex));
    306 
    307 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    308 		KASSERT(l->l_sleepq == sq);
    309 		KASSERT(l->l_mutex == sq->sq_mutex);
    310 		next = TAILQ_NEXT(l, l_sleepchain);
    311 		if (l->l_wchan != wchan)
    312 			continue;
    313 		swapin |= sleepq_remove(sq, l);
    314 		if (--expected == 0)
    315 			break;
    316 	}
    317 
    318 	sleepq_unlock(sq);
    319 
    320 	/*
    321 	 * If there are newly awakend threads that need to be swapped in,
    322 	 * then kick the swapper into action.
    323 	 */
    324 	if (swapin)
    325 		uvm_kick_scheduler();
    326 
    327 	return l;
    328 }
    329 
    330 /*
    331  * sleepq_unsleep:
    332  *
    333  *	Remove an LWP from its sleep queue and set it runnable again.
    334  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    335  *	always release it.
    336  */
    337 u_int
    338 sleepq_unsleep(lwp_t *l, bool cleanup)
    339 {
    340 	sleepq_t *sq = l->l_sleepq;
    341 	int swapin;
    342 
    343 	KASSERT(lwp_locked(l, sq->sq_mutex));
    344 	KASSERT(l->l_wchan != NULL);
    345 
    346 	swapin = sleepq_remove(sq, l);
    347 
    348 	if (cleanup) {
    349 		sleepq_unlock(sq);
    350 		if (swapin)
    351 			uvm_kick_scheduler();
    352 	}
    353 
    354 	return swapin;
    355 }
    356 
    357 /*
    358  * sleepq_timeout:
    359  *
    360  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    361  *	sleep queue.
    362  */
    363 void
    364 sleepq_timeout(void *arg)
    365 {
    366 	lwp_t *l = arg;
    367 
    368 	/*
    369 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    370 	 * current mutex will also be the sleep queue mutex.
    371 	 */
    372 	lwp_lock(l);
    373 
    374 	if (l->l_wchan == NULL) {
    375 		/* Somebody beat us to it. */
    376 		lwp_unlock(l);
    377 		return;
    378 	}
    379 
    380 	lwp_unsleep(l, true);
    381 }
    382 
    383 /*
    384  * sleepq_sigtoerror:
    385  *
    386  *	Given a signal number, interpret and return an error code.
    387  */
    388 int
    389 sleepq_sigtoerror(lwp_t *l, int sig)
    390 {
    391 	struct proc *p = l->l_proc;
    392 	int error;
    393 
    394 	KASSERT(mutex_owned(p->p_lock));
    395 
    396 	/*
    397 	 * If this sleep was canceled, don't let the syscall restart.
    398 	 */
    399 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    400 		error = EINTR;
    401 	else
    402 		error = ERESTART;
    403 
    404 	return error;
    405 }
    406 
    407 /*
    408  * sleepq_abort:
    409  *
    410  *	After a panic or during autoconfiguration, lower the interrupt
    411  *	priority level to give pending interrupts a chance to run, and
    412  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    413  *	always returns zero.
    414  */
    415 int
    416 sleepq_abort(kmutex_t *mtx, int unlock)
    417 {
    418 	extern int safepri;
    419 	int s;
    420 
    421 	s = splhigh();
    422 	splx(safepri);
    423 	splx(s);
    424 	if (mtx != NULL && unlock != 0)
    425 		mutex_exit(mtx);
    426 
    427 	return 0;
    428 }
    429 
    430 /*
    431  * sleepq_changepri:
    432  *
    433  *	Adjust the priority of an LWP residing on a sleepq.  This method
    434  *	will only alter the user priority; the effective priority is
    435  *	assumed to have been fixed at the time of insertion into the queue.
    436  */
    437 void
    438 sleepq_changepri(lwp_t *l, pri_t pri)
    439 {
    440 	sleepq_t *sq = l->l_sleepq;
    441 	pri_t opri;
    442 
    443 	KASSERT(lwp_locked(l, sq->sq_mutex));
    444 
    445 	opri = lwp_eprio(l);
    446 	l->l_priority = pri;
    447 	if (lwp_eprio(l) != opri) {
    448 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    449 		sleepq_insert(sq, l, l->l_syncobj);
    450 	}
    451 }
    452 
    453 void
    454 sleepq_lendpri(lwp_t *l, pri_t pri)
    455 {
    456 	sleepq_t *sq = l->l_sleepq;
    457 	pri_t opri;
    458 
    459 	KASSERT(lwp_locked(l, sq->sq_mutex));
    460 
    461 	opri = lwp_eprio(l);
    462 	l->l_inheritedprio = pri;
    463 
    464 	if (lwp_eprio(l) != opri &&
    465 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    466 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    467 		sleepq_insert(sq, l, l->l_syncobj);
    468 	}
    469 }
    470