kern_sleepq.c revision 1.28 1 /* $NetBSD: kern_sleepq.c,v 1.28 2008/04/28 20:24:03 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.28 2008/04/28 20:24:03 martin Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/systm.h>
48 #include <sys/sleepq.h>
49 #include <sys/ktrace.h>
50
51 #include <uvm/uvm_extern.h>
52
53 int sleepq_sigtoerror(lwp_t *, int);
54
55 /* General purpose sleep table, used by ltsleep() and condition variables. */
56 sleeptab_t sleeptab;
57
58 /*
59 * sleeptab_init:
60 *
61 * Initialize a sleep table.
62 */
63 void
64 sleeptab_init(sleeptab_t *st)
65 {
66 sleepq_t *sq;
67 int i;
68
69 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
70 sq = &st->st_queues[i].st_queue;
71 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
72 IPL_SCHED);
73 sleepq_init(sq, &st->st_queues[i].st_mutex);
74 }
75 }
76
77 /*
78 * sleepq_init:
79 *
80 * Prepare a sleep queue for use.
81 */
82 void
83 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
84 {
85
86 sq->sq_waiters = 0;
87 sq->sq_mutex = mtx;
88 TAILQ_INIT(&sq->sq_queue);
89 }
90
91 /*
92 * sleepq_remove:
93 *
94 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
95 * the LWP is swapped out; if so the caller needs to awaken the swapper
96 * to bring the LWP into memory.
97 */
98 int
99 sleepq_remove(sleepq_t *sq, lwp_t *l)
100 {
101 struct schedstate_percpu *spc;
102 struct cpu_info *ci;
103
104 KASSERT(lwp_locked(l, sq->sq_mutex));
105 KASSERT(sq->sq_waiters > 0);
106
107 sq->sq_waiters--;
108 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
109
110 #ifdef DIAGNOSTIC
111 if (sq->sq_waiters == 0)
112 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
113 else
114 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
115 #endif
116
117 l->l_syncobj = &sched_syncobj;
118 l->l_wchan = NULL;
119 l->l_sleepq = NULL;
120 l->l_flag &= ~LW_SINTR;
121
122 ci = l->l_cpu;
123 spc = &ci->ci_schedstate;
124
125 /*
126 * If not sleeping, the LWP must have been suspended. Let whoever
127 * holds it stopped set it running again.
128 */
129 if (l->l_stat != LSSLEEP) {
130 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
131 lwp_setlock(l, spc->spc_lwplock);
132 return 0;
133 }
134
135 /*
136 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
137 * about to call mi_switch(), in which case it will yield.
138 */
139 if ((l->l_flag & LW_RUNNING) != 0) {
140 l->l_stat = LSONPROC;
141 l->l_slptime = 0;
142 lwp_setlock(l, spc->spc_lwplock);
143 return 0;
144 }
145
146 /*
147 * Call the wake-up handler of scheduler.
148 * It might change the CPU for this thread.
149 */
150 sched_wakeup(l);
151 ci = l->l_cpu;
152 spc = &ci->ci_schedstate;
153
154 /*
155 * Set it running.
156 */
157 spc_lock(ci);
158 lwp_setlock(l, spc->spc_mutex);
159 sched_setrunnable(l);
160 l->l_stat = LSRUN;
161 l->l_slptime = 0;
162 if ((l->l_flag & LW_INMEM) != 0) {
163 sched_enqueue(l, false);
164 spc_unlock(ci);
165 return 0;
166 }
167 spc_unlock(ci);
168 return 1;
169 }
170
171 /*
172 * sleepq_insert:
173 *
174 * Insert an LWP into the sleep queue, optionally sorting by priority.
175 */
176 inline void
177 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
178 {
179 lwp_t *l2;
180 const int pri = lwp_eprio(l);
181
182 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
183 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
184 if (lwp_eprio(l2) < pri) {
185 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
186 return;
187 }
188 }
189 }
190
191 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
192 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
193 else
194 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
195 }
196
197 /*
198 * sleepq_enqueue:
199 *
200 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
201 * queue must already be locked, and any interlock (such as the kernel
202 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
203 */
204 void
205 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
206 {
207 lwp_t *l = curlwp;
208
209 KASSERT(lwp_locked(l, sq->sq_mutex));
210 KASSERT(l->l_stat == LSONPROC);
211 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
212
213 l->l_syncobj = sobj;
214 l->l_wchan = wchan;
215 l->l_sleepq = sq;
216 l->l_wmesg = wmesg;
217 l->l_slptime = 0;
218 l->l_stat = LSSLEEP;
219 l->l_sleeperr = 0;
220
221 sq->sq_waiters++;
222 sleepq_insert(sq, l, sobj);
223 sched_slept(l);
224 }
225
226 /*
227 * sleepq_block:
228 *
229 * After any intermediate step such as releasing an interlock, switch.
230 * sleepq_block() may return early under exceptional conditions, for
231 * example if the LWP's containing process is exiting.
232 */
233 int
234 sleepq_block(int timo, bool catch)
235 {
236 int error = 0, sig;
237 struct proc *p;
238 lwp_t *l = curlwp;
239 bool early = false;
240
241 ktrcsw(1, 0);
242
243 /*
244 * If sleeping interruptably, check for pending signals, exits or
245 * core dump events.
246 */
247 if (catch) {
248 l->l_flag |= LW_SINTR;
249 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
250 l->l_flag &= ~LW_CANCELLED;
251 error = EINTR;
252 early = true;
253 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
254 early = true;
255 }
256
257 if (early) {
258 /* lwp_unsleep() will release the lock */
259 lwp_unsleep(l, true);
260 } else {
261 if (timo)
262 callout_schedule(&l->l_timeout_ch, timo);
263 mi_switch(l);
264
265 /* The LWP and sleep queue are now unlocked. */
266 if (timo) {
267 /*
268 * Even if the callout appears to have fired, we need to
269 * stop it in order to synchronise with other CPUs.
270 */
271 if (callout_halt(&l->l_timeout_ch, NULL))
272 error = EWOULDBLOCK;
273 }
274 }
275
276 if (catch && error == 0) {
277 p = l->l_proc;
278 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
279 error = EINTR;
280 else if ((l->l_flag & LW_PENDSIG) != 0) {
281 mutex_enter(p->p_lock);
282 if ((sig = issignal(l)) != 0)
283 error = sleepq_sigtoerror(l, sig);
284 mutex_exit(p->p_lock);
285 }
286 }
287
288 ktrcsw(0, 0);
289
290 KERNEL_LOCK(l->l_biglocks, l);
291 return error;
292 }
293
294 /*
295 * sleepq_wake:
296 *
297 * Wake zero or more LWPs blocked on a single wait channel.
298 */
299 lwp_t *
300 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
301 {
302 lwp_t *l, *next;
303 int swapin = 0;
304
305 KASSERT(mutex_owned(sq->sq_mutex));
306
307 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
308 KASSERT(l->l_sleepq == sq);
309 KASSERT(l->l_mutex == sq->sq_mutex);
310 next = TAILQ_NEXT(l, l_sleepchain);
311 if (l->l_wchan != wchan)
312 continue;
313 swapin |= sleepq_remove(sq, l);
314 if (--expected == 0)
315 break;
316 }
317
318 sleepq_unlock(sq);
319
320 /*
321 * If there are newly awakend threads that need to be swapped in,
322 * then kick the swapper into action.
323 */
324 if (swapin)
325 uvm_kick_scheduler();
326
327 return l;
328 }
329
330 /*
331 * sleepq_unsleep:
332 *
333 * Remove an LWP from its sleep queue and set it runnable again.
334 * sleepq_unsleep() is called with the LWP's mutex held, and will
335 * always release it.
336 */
337 u_int
338 sleepq_unsleep(lwp_t *l, bool cleanup)
339 {
340 sleepq_t *sq = l->l_sleepq;
341 int swapin;
342
343 KASSERT(lwp_locked(l, sq->sq_mutex));
344 KASSERT(l->l_wchan != NULL);
345
346 swapin = sleepq_remove(sq, l);
347
348 if (cleanup) {
349 sleepq_unlock(sq);
350 if (swapin)
351 uvm_kick_scheduler();
352 }
353
354 return swapin;
355 }
356
357 /*
358 * sleepq_timeout:
359 *
360 * Entered via the callout(9) subsystem to time out an LWP that is on a
361 * sleep queue.
362 */
363 void
364 sleepq_timeout(void *arg)
365 {
366 lwp_t *l = arg;
367
368 /*
369 * Lock the LWP. Assuming it's still on the sleep queue, its
370 * current mutex will also be the sleep queue mutex.
371 */
372 lwp_lock(l);
373
374 if (l->l_wchan == NULL) {
375 /* Somebody beat us to it. */
376 lwp_unlock(l);
377 return;
378 }
379
380 lwp_unsleep(l, true);
381 }
382
383 /*
384 * sleepq_sigtoerror:
385 *
386 * Given a signal number, interpret and return an error code.
387 */
388 int
389 sleepq_sigtoerror(lwp_t *l, int sig)
390 {
391 struct proc *p = l->l_proc;
392 int error;
393
394 KASSERT(mutex_owned(p->p_lock));
395
396 /*
397 * If this sleep was canceled, don't let the syscall restart.
398 */
399 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
400 error = EINTR;
401 else
402 error = ERESTART;
403
404 return error;
405 }
406
407 /*
408 * sleepq_abort:
409 *
410 * After a panic or during autoconfiguration, lower the interrupt
411 * priority level to give pending interrupts a chance to run, and
412 * then return. Called if sleepq_dontsleep() returns non-zero, and
413 * always returns zero.
414 */
415 int
416 sleepq_abort(kmutex_t *mtx, int unlock)
417 {
418 extern int safepri;
419 int s;
420
421 s = splhigh();
422 splx(safepri);
423 splx(s);
424 if (mtx != NULL && unlock != 0)
425 mutex_exit(mtx);
426
427 return 0;
428 }
429
430 /*
431 * sleepq_changepri:
432 *
433 * Adjust the priority of an LWP residing on a sleepq. This method
434 * will only alter the user priority; the effective priority is
435 * assumed to have been fixed at the time of insertion into the queue.
436 */
437 void
438 sleepq_changepri(lwp_t *l, pri_t pri)
439 {
440 sleepq_t *sq = l->l_sleepq;
441 pri_t opri;
442
443 KASSERT(lwp_locked(l, sq->sq_mutex));
444
445 opri = lwp_eprio(l);
446 l->l_priority = pri;
447 if (lwp_eprio(l) != opri) {
448 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
449 sleepq_insert(sq, l, l->l_syncobj);
450 }
451 }
452
453 void
454 sleepq_lendpri(lwp_t *l, pri_t pri)
455 {
456 sleepq_t *sq = l->l_sleepq;
457 pri_t opri;
458
459 KASSERT(lwp_locked(l, sq->sq_mutex));
460
461 opri = lwp_eprio(l);
462 l->l_inheritedprio = pri;
463
464 if (lwp_eprio(l) != opri &&
465 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
466 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
467 sleepq_insert(sq, l, l->l_syncobj);
468 }
469 }
470