kern_sleepq.c revision 1.28.2.3 1 /* $NetBSD: kern_sleepq.c,v 1.28.2.3 2008/06/30 04:55:56 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.28.2.3 2008/06/30 04:55:56 wrstuden Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sa.h>
47 #include <sys/savar.h>
48 #include <sys/sched.h>
49 #include <sys/systm.h>
50 #include <sys/sleepq.h>
51 #include <sys/ktrace.h>
52
53 #include <uvm/uvm_extern.h>
54
55 int sleepq_sigtoerror(lwp_t *, int);
56
57 /* General purpose sleep table, used by ltsleep() and condition variables. */
58 sleeptab_t sleeptab;
59
60 /*
61 * sleeptab_init:
62 *
63 * Initialize a sleep table.
64 */
65 void
66 sleeptab_init(sleeptab_t *st)
67 {
68 sleepq_t *sq;
69 int i;
70
71 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
72 sq = &st->st_queues[i].st_queue;
73 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
74 IPL_SCHED);
75 sleepq_init(sq);
76 }
77 }
78
79 /*
80 * sleepq_init:
81 *
82 * Prepare a sleep queue for use.
83 */
84 void
85 sleepq_init(sleepq_t *sq)
86 {
87
88 TAILQ_INIT(sq);
89 }
90
91 /*
92 * sleepq_remove:
93 *
94 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
95 * the LWP is swapped out; if so the caller needs to awaken the swapper
96 * to bring the LWP into memory.
97 */
98 int
99 sleepq_remove(sleepq_t *sq, lwp_t *l)
100 {
101 struct schedstate_percpu *spc;
102 struct cpu_info *ci;
103
104 KASSERT(lwp_locked(l, NULL));
105
106 TAILQ_REMOVE(sq, l, l_sleepchain);
107 l->l_syncobj = &sched_syncobj;
108 l->l_wchan = NULL;
109 l->l_sleepq = NULL;
110 l->l_flag &= ~LW_SINTR;
111
112 ci = l->l_cpu;
113 spc = &ci->ci_schedstate;
114
115 /*
116 * If not sleeping, the LWP must have been suspended. Let whoever
117 * holds it stopped set it running again.
118 */
119 if (l->l_stat != LSSLEEP) {
120 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
121 lwp_setlock(l, spc->spc_lwplock);
122 return 0;
123 }
124
125 /*
126 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
127 * about to call mi_switch(), in which case it will yield.
128 */
129 if ((l->l_pflag & LP_RUNNING) != 0) {
130 l->l_stat = LSONPROC;
131 l->l_slptime = 0;
132 lwp_setlock(l, spc->spc_lwplock);
133 return 0;
134 }
135
136 /* Update sleep time delta, call the wake-up handler of scheduler */
137 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
138 sched_wakeup(l);
139
140 /* Look for a CPU to wake up */
141 l->l_cpu = sched_takecpu(l);
142 ci = l->l_cpu;
143 spc = &ci->ci_schedstate;
144
145 /*
146 * Set it running.
147 */
148 spc_lock(ci);
149 lwp_setlock(l, spc->spc_mutex);
150 if (l->l_proc->p_sa != NULL)
151 sa_awaken(l);
152 sched_setrunnable(l);
153 l->l_stat = LSRUN;
154 l->l_slptime = 0;
155 if ((l->l_flag & LW_INMEM) != 0) {
156 sched_enqueue(l, false);
157 spc_unlock(ci);
158 return 0;
159 }
160 spc_unlock(ci);
161 return 1;
162 }
163
164 /*
165 * sleepq_insert:
166 *
167 * Insert an LWP into the sleep queue, optionally sorting by priority.
168 */
169 inline void
170 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
171 {
172 lwp_t *l2;
173 const int pri = lwp_eprio(l);
174
175 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
176 TAILQ_FOREACH(l2, sq, l_sleepchain) {
177 if (lwp_eprio(l2) < pri) {
178 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
179 return;
180 }
181 }
182 }
183
184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
185 TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
186 else
187 TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
188 }
189
190 /*
191 * sleepq_enqueue:
192 *
193 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
194 * queue must already be locked, and any interlock (such as the kernel
195 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
196 */
197 void
198 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
199 {
200 lwp_t *l = curlwp;
201
202 KASSERT(lwp_locked(l, NULL));
203 KASSERT(l->l_stat == LSONPROC);
204 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
205
206 l->l_syncobj = sobj;
207 l->l_wchan = wchan;
208 l->l_sleepq = sq;
209 l->l_wmesg = wmesg;
210 l->l_slptime = 0;
211 l->l_stat = LSSLEEP;
212 l->l_sleeperr = 0;
213
214 sleepq_insert(sq, l, sobj);
215
216 /* Save the time when thread has slept */
217 l->l_slpticks = hardclock_ticks;
218 sched_slept(l);
219 }
220
221 /*
222 * sleepq_block:
223 *
224 * After any intermediate step such as releasing an interlock, switch.
225 * sleepq_block() may return early under exceptional conditions, for
226 * example if the LWP's containing process is exiting.
227 */
228 int
229 sleepq_block(int timo, bool catch)
230 {
231 int error = 0, sig;
232 struct proc *p;
233 lwp_t *l = curlwp;
234 bool early = false;
235
236 ktrcsw(1, 0);
237
238 /*
239 * If sleeping interruptably, check for pending signals, exits or
240 * core dump events.
241 */
242 if (catch) {
243 l->l_flag |= LW_SINTR;
244 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
245 l->l_flag &= ~LW_CANCELLED;
246 error = EINTR;
247 early = true;
248 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
249 early = true;
250 }
251
252 if (early) {
253 /* lwp_unsleep() will release the lock */
254 lwp_unsleep(l, true);
255 } else {
256 if (timo)
257 callout_schedule(&l->l_timeout_ch, timo);
258
259 if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
260 sa_switch(l);
261 else
262 mi_switch(l);
263
264 /* The LWP and sleep queue are now unlocked. */
265 if (timo) {
266 /*
267 * Even if the callout appears to have fired, we need to
268 * stop it in order to synchronise with other CPUs.
269 */
270 if (callout_halt(&l->l_timeout_ch, NULL))
271 error = EWOULDBLOCK;
272 }
273 }
274
275 if (catch && error == 0) {
276 p = l->l_proc;
277 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
278 error = EINTR;
279 else if ((l->l_flag & LW_PENDSIG) != 0) {
280 /*
281 * Acquiring p_lock may cause us to recurse
282 * through the sleep path and back into this
283 * routine, but is safe because LWPs sleeping
284 * on locks are non-interruptable. We will
285 * not recurse again.
286 */
287 mutex_enter(p->p_lock);
288 if ((sig = issignal(l)) != 0)
289 error = sleepq_sigtoerror(l, sig);
290 mutex_exit(p->p_lock);
291 }
292 }
293
294 ktrcsw(0, 0);
295 if (__predict_false(l->l_biglocks != 0)) {
296 KERNEL_LOCK(l->l_biglocks, NULL);
297 }
298 return error;
299 }
300
301 /*
302 * sleepq_wake:
303 *
304 * Wake zero or more LWPs blocked on a single wait channel.
305 */
306 lwp_t *
307 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
308 {
309 lwp_t *l, *next;
310 int swapin = 0;
311
312 KASSERT(mutex_owned(mp));
313
314 for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
315 KASSERT(l->l_sleepq == sq);
316 KASSERT(l->l_mutex == mp);
317 next = TAILQ_NEXT(l, l_sleepchain);
318 if (l->l_wchan != wchan)
319 continue;
320 swapin |= sleepq_remove(sq, l);
321 if (--expected == 0)
322 break;
323 }
324
325 mutex_spin_exit(mp);
326
327 /*
328 * If there are newly awakend threads that need to be swapped in,
329 * then kick the swapper into action.
330 */
331 if (swapin)
332 uvm_kick_scheduler();
333
334 return l;
335 }
336
337 /*
338 * sleepq_unsleep:
339 *
340 * Remove an LWP from its sleep queue and set it runnable again.
341 * sleepq_unsleep() is called with the LWP's mutex held, and will
342 * always release it.
343 */
344 u_int
345 sleepq_unsleep(lwp_t *l, bool cleanup)
346 {
347 sleepq_t *sq = l->l_sleepq;
348 kmutex_t *mp = l->l_mutex;
349 int swapin;
350
351 KASSERT(lwp_locked(l, mp));
352 KASSERT(l->l_wchan != NULL);
353
354 swapin = sleepq_remove(sq, l);
355
356 if (cleanup) {
357 mutex_spin_exit(mp);
358 if (swapin)
359 uvm_kick_scheduler();
360 }
361
362 return swapin;
363 }
364
365 /*
366 * sleepq_timeout:
367 *
368 * Entered via the callout(9) subsystem to time out an LWP that is on a
369 * sleep queue.
370 */
371 void
372 sleepq_timeout(void *arg)
373 {
374 lwp_t *l = arg;
375
376 /*
377 * Lock the LWP. Assuming it's still on the sleep queue, its
378 * current mutex will also be the sleep queue mutex.
379 */
380 lwp_lock(l);
381
382 if (l->l_wchan == NULL) {
383 /* Somebody beat us to it. */
384 lwp_unlock(l);
385 return;
386 }
387
388 lwp_unsleep(l, true);
389 }
390
391 /*
392 * sleepq_sigtoerror:
393 *
394 * Given a signal number, interpret and return an error code.
395 */
396 int
397 sleepq_sigtoerror(lwp_t *l, int sig)
398 {
399 struct proc *p = l->l_proc;
400 int error;
401
402 KASSERT(mutex_owned(p->p_lock));
403
404 /*
405 * If this sleep was canceled, don't let the syscall restart.
406 */
407 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
408 error = EINTR;
409 else
410 error = ERESTART;
411
412 return error;
413 }
414
415 /*
416 * sleepq_abort:
417 *
418 * After a panic or during autoconfiguration, lower the interrupt
419 * priority level to give pending interrupts a chance to run, and
420 * then return. Called if sleepq_dontsleep() returns non-zero, and
421 * always returns zero.
422 */
423 int
424 sleepq_abort(kmutex_t *mtx, int unlock)
425 {
426 extern int safepri;
427 int s;
428
429 s = splhigh();
430 splx(safepri);
431 splx(s);
432 if (mtx != NULL && unlock != 0)
433 mutex_exit(mtx);
434
435 return 0;
436 }
437
438 /*
439 * sleepq_changepri:
440 *
441 * Adjust the priority of an LWP residing on a sleepq. This method
442 * will only alter the user priority; the effective priority is
443 * assumed to have been fixed at the time of insertion into the queue.
444 */
445 void
446 sleepq_changepri(lwp_t *l, pri_t pri)
447 {
448 sleepq_t *sq = l->l_sleepq;
449 pri_t opri;
450
451 KASSERT(lwp_locked(l, NULL));
452
453 opri = lwp_eprio(l);
454 l->l_priority = pri;
455
456 if (lwp_eprio(l) == opri) {
457 return;
458 }
459 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
460 return;
461 }
462
463 /*
464 * Don't let the sleep queue become empty, even briefly.
465 * cv_signal() and cv_broadcast() inspect it without the
466 * sleep queue lock held and need to see a non-empty queue
467 * head if there are waiters.
468 */
469 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
470 return;
471 }
472 TAILQ_REMOVE(sq, l, l_sleepchain);
473 sleepq_insert(sq, l, l->l_syncobj);
474 }
475
476 void
477 sleepq_lendpri(lwp_t *l, pri_t pri)
478 {
479 sleepq_t *sq = l->l_sleepq;
480 pri_t opri;
481
482 KASSERT(lwp_locked(l, NULL));
483
484 opri = lwp_eprio(l);
485 l->l_inheritedprio = pri;
486
487 if (lwp_eprio(l) == opri) {
488 return;
489 }
490 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
491 return;
492 }
493
494 /*
495 * Don't let the sleep queue become empty, even briefly.
496 * cv_signal() and cv_broadcast() inspect it without the
497 * sleep queue lock held and need to see a non-empty queue
498 * head if there are waiters.
499 */
500 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
501 return;
502 }
503 TAILQ_REMOVE(sq, l, l_sleepchain);
504 sleepq_insert(sq, l, l->l_syncobj);
505 }
506