kern_sleepq.c revision 1.29 1 /* $NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.29 2008/05/19 12:48:54 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/systm.h>
48 #include <sys/sleepq.h>
49 #include <sys/ktrace.h>
50
51 #include <uvm/uvm_extern.h>
52
53 int sleepq_sigtoerror(lwp_t *, int);
54
55 /* General purpose sleep table, used by ltsleep() and condition variables. */
56 sleeptab_t sleeptab;
57
58 /*
59 * sleeptab_init:
60 *
61 * Initialize a sleep table.
62 */
63 void
64 sleeptab_init(sleeptab_t *st)
65 {
66 sleepq_t *sq;
67 int i;
68
69 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
70 sq = &st->st_queues[i].st_queue;
71 mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
72 IPL_SCHED);
73 sleepq_init(sq, &st->st_queues[i].st_mutex);
74 }
75 }
76
77 /*
78 * sleepq_init:
79 *
80 * Prepare a sleep queue for use.
81 */
82 void
83 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
84 {
85
86 sq->sq_waiters = 0;
87 sq->sq_mutex = mtx;
88 TAILQ_INIT(&sq->sq_queue);
89 }
90
91 /*
92 * sleepq_remove:
93 *
94 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
95 * the LWP is swapped out; if so the caller needs to awaken the swapper
96 * to bring the LWP into memory.
97 */
98 int
99 sleepq_remove(sleepq_t *sq, lwp_t *l)
100 {
101 struct schedstate_percpu *spc;
102 struct cpu_info *ci;
103
104 KASSERT(lwp_locked(l, sq->sq_mutex));
105 KASSERT(sq->sq_waiters > 0);
106
107 sq->sq_waiters--;
108 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
109
110 #ifdef DIAGNOSTIC
111 if (sq->sq_waiters == 0)
112 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
113 else
114 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
115 #endif
116
117 l->l_syncobj = &sched_syncobj;
118 l->l_wchan = NULL;
119 l->l_sleepq = NULL;
120 l->l_flag &= ~LW_SINTR;
121
122 ci = l->l_cpu;
123 spc = &ci->ci_schedstate;
124
125 /*
126 * If not sleeping, the LWP must have been suspended. Let whoever
127 * holds it stopped set it running again.
128 */
129 if (l->l_stat != LSSLEEP) {
130 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
131 lwp_setlock(l, spc->spc_lwplock);
132 return 0;
133 }
134
135 /*
136 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
137 * about to call mi_switch(), in which case it will yield.
138 */
139 if ((l->l_flag & LW_RUNNING) != 0) {
140 l->l_stat = LSONPROC;
141 l->l_slptime = 0;
142 lwp_setlock(l, spc->spc_lwplock);
143 return 0;
144 }
145
146 /* Update sleep time delta, call the wake-up handler of scheduler */
147 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
148 sched_wakeup(l);
149
150 /* Look for a CPU to wake up */
151 l->l_cpu = sched_takecpu(l);
152 ci = l->l_cpu;
153 spc = &ci->ci_schedstate;
154
155 /*
156 * Set it running.
157 */
158 spc_lock(ci);
159 lwp_setlock(l, spc->spc_mutex);
160 sched_setrunnable(l);
161 l->l_stat = LSRUN;
162 l->l_slptime = 0;
163 if ((l->l_flag & LW_INMEM) != 0) {
164 sched_enqueue(l, false);
165 spc_unlock(ci);
166 return 0;
167 }
168 spc_unlock(ci);
169 return 1;
170 }
171
172 /*
173 * sleepq_insert:
174 *
175 * Insert an LWP into the sleep queue, optionally sorting by priority.
176 */
177 inline void
178 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
179 {
180 lwp_t *l2;
181 const int pri = lwp_eprio(l);
182
183 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
184 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
185 if (lwp_eprio(l2) < pri) {
186 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
187 return;
188 }
189 }
190 }
191
192 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
193 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
194 else
195 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
196 }
197
198 /*
199 * sleepq_enqueue:
200 *
201 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
202 * queue must already be locked, and any interlock (such as the kernel
203 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
204 */
205 void
206 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
207 {
208 lwp_t *l = curlwp;
209
210 KASSERT(lwp_locked(l, sq->sq_mutex));
211 KASSERT(l->l_stat == LSONPROC);
212 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
213
214 l->l_syncobj = sobj;
215 l->l_wchan = wchan;
216 l->l_sleepq = sq;
217 l->l_wmesg = wmesg;
218 l->l_slptime = 0;
219 l->l_stat = LSSLEEP;
220 l->l_sleeperr = 0;
221
222 sq->sq_waiters++;
223 sleepq_insert(sq, l, sobj);
224
225 /* Save the time when thread has slept */
226 l->l_slpticks = hardclock_ticks;
227 sched_slept(l);
228 }
229
230 /*
231 * sleepq_block:
232 *
233 * After any intermediate step such as releasing an interlock, switch.
234 * sleepq_block() may return early under exceptional conditions, for
235 * example if the LWP's containing process is exiting.
236 */
237 int
238 sleepq_block(int timo, bool catch)
239 {
240 int error = 0, sig;
241 struct proc *p;
242 lwp_t *l = curlwp;
243 bool early = false;
244
245 ktrcsw(1, 0);
246
247 /*
248 * If sleeping interruptably, check for pending signals, exits or
249 * core dump events.
250 */
251 if (catch) {
252 l->l_flag |= LW_SINTR;
253 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
254 l->l_flag &= ~LW_CANCELLED;
255 error = EINTR;
256 early = true;
257 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
258 early = true;
259 }
260
261 if (early) {
262 /* lwp_unsleep() will release the lock */
263 lwp_unsleep(l, true);
264 } else {
265 if (timo)
266 callout_schedule(&l->l_timeout_ch, timo);
267 mi_switch(l);
268
269 /* The LWP and sleep queue are now unlocked. */
270 if (timo) {
271 /*
272 * Even if the callout appears to have fired, we need to
273 * stop it in order to synchronise with other CPUs.
274 */
275 if (callout_halt(&l->l_timeout_ch, NULL))
276 error = EWOULDBLOCK;
277 }
278 }
279
280 if (catch && error == 0) {
281 p = l->l_proc;
282 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
283 error = EINTR;
284 else if ((l->l_flag & LW_PENDSIG) != 0) {
285 mutex_enter(p->p_lock);
286 if ((sig = issignal(l)) != 0)
287 error = sleepq_sigtoerror(l, sig);
288 mutex_exit(p->p_lock);
289 }
290 }
291
292 ktrcsw(0, 0);
293
294 KERNEL_LOCK(l->l_biglocks, l);
295 return error;
296 }
297
298 /*
299 * sleepq_wake:
300 *
301 * Wake zero or more LWPs blocked on a single wait channel.
302 */
303 lwp_t *
304 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
305 {
306 lwp_t *l, *next;
307 int swapin = 0;
308
309 KASSERT(mutex_owned(sq->sq_mutex));
310
311 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
312 KASSERT(l->l_sleepq == sq);
313 KASSERT(l->l_mutex == sq->sq_mutex);
314 next = TAILQ_NEXT(l, l_sleepchain);
315 if (l->l_wchan != wchan)
316 continue;
317 swapin |= sleepq_remove(sq, l);
318 if (--expected == 0)
319 break;
320 }
321
322 sleepq_unlock(sq);
323
324 /*
325 * If there are newly awakend threads that need to be swapped in,
326 * then kick the swapper into action.
327 */
328 if (swapin)
329 uvm_kick_scheduler();
330
331 return l;
332 }
333
334 /*
335 * sleepq_unsleep:
336 *
337 * Remove an LWP from its sleep queue and set it runnable again.
338 * sleepq_unsleep() is called with the LWP's mutex held, and will
339 * always release it.
340 */
341 u_int
342 sleepq_unsleep(lwp_t *l, bool cleanup)
343 {
344 sleepq_t *sq = l->l_sleepq;
345 int swapin;
346
347 KASSERT(lwp_locked(l, sq->sq_mutex));
348 KASSERT(l->l_wchan != NULL);
349
350 swapin = sleepq_remove(sq, l);
351
352 if (cleanup) {
353 sleepq_unlock(sq);
354 if (swapin)
355 uvm_kick_scheduler();
356 }
357
358 return swapin;
359 }
360
361 /*
362 * sleepq_timeout:
363 *
364 * Entered via the callout(9) subsystem to time out an LWP that is on a
365 * sleep queue.
366 */
367 void
368 sleepq_timeout(void *arg)
369 {
370 lwp_t *l = arg;
371
372 /*
373 * Lock the LWP. Assuming it's still on the sleep queue, its
374 * current mutex will also be the sleep queue mutex.
375 */
376 lwp_lock(l);
377
378 if (l->l_wchan == NULL) {
379 /* Somebody beat us to it. */
380 lwp_unlock(l);
381 return;
382 }
383
384 lwp_unsleep(l, true);
385 }
386
387 /*
388 * sleepq_sigtoerror:
389 *
390 * Given a signal number, interpret and return an error code.
391 */
392 int
393 sleepq_sigtoerror(lwp_t *l, int sig)
394 {
395 struct proc *p = l->l_proc;
396 int error;
397
398 KASSERT(mutex_owned(p->p_lock));
399
400 /*
401 * If this sleep was canceled, don't let the syscall restart.
402 */
403 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
404 error = EINTR;
405 else
406 error = ERESTART;
407
408 return error;
409 }
410
411 /*
412 * sleepq_abort:
413 *
414 * After a panic or during autoconfiguration, lower the interrupt
415 * priority level to give pending interrupts a chance to run, and
416 * then return. Called if sleepq_dontsleep() returns non-zero, and
417 * always returns zero.
418 */
419 int
420 sleepq_abort(kmutex_t *mtx, int unlock)
421 {
422 extern int safepri;
423 int s;
424
425 s = splhigh();
426 splx(safepri);
427 splx(s);
428 if (mtx != NULL && unlock != 0)
429 mutex_exit(mtx);
430
431 return 0;
432 }
433
434 /*
435 * sleepq_changepri:
436 *
437 * Adjust the priority of an LWP residing on a sleepq. This method
438 * will only alter the user priority; the effective priority is
439 * assumed to have been fixed at the time of insertion into the queue.
440 */
441 void
442 sleepq_changepri(lwp_t *l, pri_t pri)
443 {
444 sleepq_t *sq = l->l_sleepq;
445 pri_t opri;
446
447 KASSERT(lwp_locked(l, sq->sq_mutex));
448
449 opri = lwp_eprio(l);
450 l->l_priority = pri;
451 if (lwp_eprio(l) != opri) {
452 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
453 sleepq_insert(sq, l, l->l_syncobj);
454 }
455 }
456
457 void
458 sleepq_lendpri(lwp_t *l, pri_t pri)
459 {
460 sleepq_t *sq = l->l_sleepq;
461 pri_t opri;
462
463 KASSERT(lwp_locked(l, sq->sq_mutex));
464
465 opri = lwp_eprio(l);
466 l->l_inheritedprio = pri;
467
468 if (lwp_eprio(l) != opri &&
469 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
470 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
471 sleepq_insert(sq, l, l->l_syncobj);
472 }
473 }
474