Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.35.4.1
      1 /*	$NetBSD: kern_sleepq.c,v 1.35.4.1 2012/02/04 16:57:58 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.35.4.1 2012/02/04 16:57:58 bouyer Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/pool.h>
     44 #include <sys/proc.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/sa.h>
     47 #include <sys/savar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 
     53 #include <uvm/uvm_extern.h>
     54 
     55 #include "opt_sa.h"
     56 
     57 int	sleepq_sigtoerror(lwp_t *, int);
     58 
     59 /* General purpose sleep table, used by ltsleep() and condition variables. */
     60 sleeptab_t	sleeptab;
     61 
     62 /*
     63  * sleeptab_init:
     64  *
     65  *	Initialize a sleep table.
     66  */
     67 void
     68 sleeptab_init(sleeptab_t *st)
     69 {
     70 	sleepq_t *sq;
     71 	int i;
     72 
     73 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     74 		sq = &st->st_queues[i].st_queue;
     75 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_DEFAULT,
     76 		    IPL_SCHED);
     77 		sleepq_init(sq);
     78 	}
     79 }
     80 
     81 /*
     82  * sleepq_init:
     83  *
     84  *	Prepare a sleep queue for use.
     85  */
     86 void
     87 sleepq_init(sleepq_t *sq)
     88 {
     89 
     90 	TAILQ_INIT(sq);
     91 }
     92 
     93 /*
     94  * sleepq_remove:
     95  *
     96  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
     97  *	the LWP is swapped out; if so the caller needs to awaken the swapper
     98  *	to bring the LWP into memory.
     99  */
    100 int
    101 sleepq_remove(sleepq_t *sq, lwp_t *l)
    102 {
    103 	struct schedstate_percpu *spc;
    104 	struct cpu_info *ci;
    105 
    106 	KASSERT(lwp_locked(l, NULL));
    107 
    108 	TAILQ_REMOVE(sq, l, l_sleepchain);
    109 	l->l_syncobj = &sched_syncobj;
    110 	l->l_wchan = NULL;
    111 	l->l_sleepq = NULL;
    112 	l->l_flag &= ~LW_SINTR;
    113 
    114 	ci = l->l_cpu;
    115 	spc = &ci->ci_schedstate;
    116 
    117 	/*
    118 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    119 	 * holds it stopped set it running again.
    120 	 */
    121 	if (l->l_stat != LSSLEEP) {
    122 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    123 		lwp_setlock(l, spc->spc_lwplock);
    124 		return 0;
    125 	}
    126 
    127 	/*
    128 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    129 	 * about to call mi_switch(), in which case it will yield.
    130 	 */
    131 	if ((l->l_pflag & LP_RUNNING) != 0) {
    132 		l->l_stat = LSONPROC;
    133 		l->l_slptime = 0;
    134 		lwp_setlock(l, spc->spc_lwplock);
    135 		return 0;
    136 	}
    137 
    138 	/* Update sleep time delta, call the wake-up handler of scheduler */
    139 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    140 	sched_wakeup(l);
    141 
    142 	/* Look for a CPU to wake up */
    143 	l->l_cpu = sched_takecpu(l);
    144 	ci = l->l_cpu;
    145 	spc = &ci->ci_schedstate;
    146 
    147 	/*
    148 	 * Set it running.
    149 	 */
    150 	spc_lock(ci);
    151 	lwp_setlock(l, spc->spc_mutex);
    152 #ifdef KERN_SA
    153 	if (l->l_proc->p_sa != NULL)
    154 		sa_awaken(l);
    155 #endif /* KERN_SA */
    156 	sched_setrunnable(l);
    157 	l->l_stat = LSRUN;
    158 	l->l_slptime = 0;
    159 	if ((l->l_flag & LW_INMEM) != 0) {
    160 		sched_enqueue(l, false);
    161 		spc_unlock(ci);
    162 		return 0;
    163 	}
    164 	spc_unlock(ci);
    165 	return 1;
    166 }
    167 
    168 /*
    169  * sleepq_insert:
    170  *
    171  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    172  */
    173 inline void
    174 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    175 {
    176 	lwp_t *l2;
    177 	const int pri = lwp_eprio(l);
    178 
    179 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    180 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    181 			if (lwp_eprio(l2) < pri) {
    182 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    183 				return;
    184 			}
    185 		}
    186 	}
    187 
    188 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    189 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    190 	else
    191 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    192 }
    193 
    194 /*
    195  * sleepq_enqueue:
    196  *
    197  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    198  *	queue must already be locked, and any interlock (such as the kernel
    199  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    200  */
    201 void
    202 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    203 {
    204 	lwp_t *l = curlwp;
    205 
    206 	KASSERT(lwp_locked(l, NULL));
    207 	KASSERT(l->l_stat == LSONPROC);
    208 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    209 
    210 	l->l_syncobj = sobj;
    211 	l->l_wchan = wchan;
    212 	l->l_sleepq = sq;
    213 	l->l_wmesg = wmesg;
    214 	l->l_slptime = 0;
    215 	l->l_stat = LSSLEEP;
    216 	l->l_sleeperr = 0;
    217 
    218 	sleepq_insert(sq, l, sobj);
    219 
    220 	/* Save the time when thread has slept */
    221 	l->l_slpticks = hardclock_ticks;
    222 	sched_slept(l);
    223 }
    224 
    225 /*
    226  * sleepq_block:
    227  *
    228  *	After any intermediate step such as releasing an interlock, switch.
    229  * 	sleepq_block() may return early under exceptional conditions, for
    230  * 	example if the LWP's containing process is exiting.
    231  */
    232 int
    233 sleepq_block(int timo, bool catch)
    234 {
    235 	int error = 0, sig;
    236 	struct proc *p;
    237 	lwp_t *l = curlwp;
    238 	bool early = false;
    239 	int biglocks = l->l_biglocks;
    240 
    241 	ktrcsw(1, 0);
    242 
    243 	/*
    244 	 * If sleeping interruptably, check for pending signals, exits or
    245 	 * core dump events.
    246 	 */
    247 	if (catch) {
    248 		l->l_flag |= LW_SINTR;
    249 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    250 			l->l_flag &= ~LW_CANCELLED;
    251 			error = EINTR;
    252 			early = true;
    253 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    254 			early = true;
    255 	}
    256 
    257 	if (early) {
    258 		/* lwp_unsleep() will release the lock */
    259 		lwp_unsleep(l, true);
    260 	} else {
    261 		if (timo)
    262 			callout_schedule(&l->l_timeout_ch, timo);
    263 
    264 #ifdef KERN_SA
    265 		if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
    266 			sa_switch(l);
    267 		else
    268 #endif
    269 			mi_switch(l);
    270 
    271 		/* The LWP and sleep queue are now unlocked. */
    272 		if (timo) {
    273 			/*
    274 			 * Even if the callout appears to have fired, we need to
    275 			 * stop it in order to synchronise with other CPUs.
    276 			 */
    277 			if (callout_halt(&l->l_timeout_ch, NULL))
    278 				error = EWOULDBLOCK;
    279 		}
    280 	}
    281 
    282 	if (catch && error == 0) {
    283 		p = l->l_proc;
    284 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    285 			error = EINTR;
    286 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    287 			/*
    288 			 * Acquiring p_lock may cause us to recurse
    289 			 * through the sleep path and back into this
    290 			 * routine, but is safe because LWPs sleeping
    291 			 * on locks are non-interruptable.  We will
    292 			 * not recurse again.
    293 			 */
    294 			mutex_enter(p->p_lock);
    295 			if (((sig = sigispending(l, 0)) != 0 &&
    296 			    (sigprop[sig] & SA_STOP) == 0) ||
    297 			    (sig = issignal(l)) != 0)
    298 				error = sleepq_sigtoerror(l, sig);
    299 			mutex_exit(p->p_lock);
    300 		}
    301 	}
    302 
    303 	ktrcsw(0, 0);
    304 	if (__predict_false(biglocks != 0)) {
    305 		KERNEL_LOCK(biglocks, NULL);
    306 	}
    307 	return error;
    308 }
    309 
    310 /*
    311  * sleepq_wake:
    312  *
    313  *	Wake zero or more LWPs blocked on a single wait channel.
    314  */
    315 lwp_t *
    316 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    317 {
    318 	lwp_t *l, *next;
    319 	int swapin = 0;
    320 
    321 	KASSERT(mutex_owned(mp));
    322 
    323 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    324 		KASSERT(l->l_sleepq == sq);
    325 		KASSERT(l->l_mutex == mp);
    326 		next = TAILQ_NEXT(l, l_sleepchain);
    327 		if (l->l_wchan != wchan)
    328 			continue;
    329 		swapin |= sleepq_remove(sq, l);
    330 		if (--expected == 0)
    331 			break;
    332 	}
    333 
    334 	mutex_spin_exit(mp);
    335 
    336 	/*
    337 	 * If there are newly awakend threads that need to be swapped in,
    338 	 * then kick the swapper into action.
    339 	 */
    340 	if (swapin)
    341 		uvm_kick_scheduler();
    342 
    343 	return l;
    344 }
    345 
    346 /*
    347  * sleepq_unsleep:
    348  *
    349  *	Remove an LWP from its sleep queue and set it runnable again.
    350  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    351  *	always release it.
    352  */
    353 u_int
    354 sleepq_unsleep(lwp_t *l, bool cleanup)
    355 {
    356 	sleepq_t *sq = l->l_sleepq;
    357 	kmutex_t *mp = l->l_mutex;
    358 	int swapin;
    359 
    360 	KASSERT(lwp_locked(l, mp));
    361 	KASSERT(l->l_wchan != NULL);
    362 
    363 	swapin = sleepq_remove(sq, l);
    364 
    365 	if (cleanup) {
    366 		mutex_spin_exit(mp);
    367 		if (swapin)
    368 			uvm_kick_scheduler();
    369 	}
    370 
    371 	return swapin;
    372 }
    373 
    374 /*
    375  * sleepq_timeout:
    376  *
    377  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    378  *	sleep queue.
    379  */
    380 void
    381 sleepq_timeout(void *arg)
    382 {
    383 	lwp_t *l = arg;
    384 
    385 	/*
    386 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    387 	 * current mutex will also be the sleep queue mutex.
    388 	 */
    389 	lwp_lock(l);
    390 
    391 	if (l->l_wchan == NULL) {
    392 		/* Somebody beat us to it. */
    393 		lwp_unlock(l);
    394 		return;
    395 	}
    396 
    397 	lwp_unsleep(l, true);
    398 }
    399 
    400 /*
    401  * sleepq_sigtoerror:
    402  *
    403  *	Given a signal number, interpret and return an error code.
    404  */
    405 int
    406 sleepq_sigtoerror(lwp_t *l, int sig)
    407 {
    408 	struct proc *p = l->l_proc;
    409 	int error;
    410 
    411 	KASSERT(mutex_owned(p->p_lock));
    412 
    413 	/*
    414 	 * If this sleep was canceled, don't let the syscall restart.
    415 	 */
    416 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    417 		error = EINTR;
    418 	else
    419 		error = ERESTART;
    420 
    421 	return error;
    422 }
    423 
    424 /*
    425  * sleepq_abort:
    426  *
    427  *	After a panic or during autoconfiguration, lower the interrupt
    428  *	priority level to give pending interrupts a chance to run, and
    429  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    430  *	always returns zero.
    431  */
    432 int
    433 sleepq_abort(kmutex_t *mtx, int unlock)
    434 {
    435 	extern int safepri;
    436 	int s;
    437 
    438 	s = splhigh();
    439 	splx(safepri);
    440 	splx(s);
    441 	if (mtx != NULL && unlock != 0)
    442 		mutex_exit(mtx);
    443 
    444 	return 0;
    445 }
    446 
    447 /*
    448  * sleepq_changepri:
    449  *
    450  *	Adjust the priority of an LWP residing on a sleepq.  This method
    451  *	will only alter the user priority; the effective priority is
    452  *	assumed to have been fixed at the time of insertion into the queue.
    453  */
    454 void
    455 sleepq_changepri(lwp_t *l, pri_t pri)
    456 {
    457 	sleepq_t *sq = l->l_sleepq;
    458 	pri_t opri;
    459 
    460 	KASSERT(lwp_locked(l, NULL));
    461 
    462 	opri = lwp_eprio(l);
    463 	l->l_priority = pri;
    464 
    465 	if (lwp_eprio(l) == opri) {
    466 		return;
    467 	}
    468 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    469 		return;
    470 	}
    471 
    472 	/*
    473 	 * Don't let the sleep queue become empty, even briefly.
    474 	 * cv_signal() and cv_broadcast() inspect it without the
    475 	 * sleep queue lock held and need to see a non-empty queue
    476 	 * head if there are waiters.
    477 	 */
    478 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    479 		return;
    480 	}
    481 	TAILQ_REMOVE(sq, l, l_sleepchain);
    482 	sleepq_insert(sq, l, l->l_syncobj);
    483 }
    484 
    485 void
    486 sleepq_lendpri(lwp_t *l, pri_t pri)
    487 {
    488 	sleepq_t *sq = l->l_sleepq;
    489 	pri_t opri;
    490 
    491 	KASSERT(lwp_locked(l, NULL));
    492 
    493 	opri = lwp_eprio(l);
    494 	l->l_inheritedprio = pri;
    495 
    496 	if (lwp_eprio(l) == opri) {
    497 		return;
    498 	}
    499 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    500 		return;
    501 	}
    502 
    503 	/*
    504 	 * Don't let the sleep queue become empty, even briefly.
    505 	 * cv_signal() and cv_broadcast() inspect it without the
    506 	 * sleep queue lock held and need to see a non-empty queue
    507 	 * head if there are waiters.
    508 	 */
    509 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    510 		return;
    511 	}
    512 	TAILQ_REMOVE(sq, l, l_sleepchain);
    513 	sleepq_insert(sq, l, l->l_syncobj);
    514 }
    515