Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.4.2.11
      1 /*	$NetBSD: kern_sleepq.c,v 1.4.2.11 2007/04/15 16:03:50 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.4.2.11 2007/04/15 16:03:50 yamt Exp $");
     46 
     47 #include "opt_multiprocessor.h"
     48 #include "opt_lockdebug.h"
     49 #include "opt_ktrace.h"
     50 
     51 #include <sys/param.h>
     52 #include <sys/lock.h>
     53 #include <sys/kernel.h>
     54 #include <sys/cpu.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/resourcevar.h>
     58 #include <sys/sched.h>
     59 #include <sys/systm.h>
     60 #include <sys/sleepq.h>
     61 #ifdef KTRACE
     62 #include <sys/ktrace.h>
     63 #endif
     64 
     65 #include <uvm/uvm_extern.h>
     66 
     67 int	sleepq_sigtoerror(lwp_t *, int);
     68 
     69 /* General purpose sleep table, used by ltsleep() and condition variables. */
     70 sleeptab_t	sleeptab;
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize a sleep table.
     76  */
     77 void
     78 sleeptab_init(sleeptab_t *st)
     79 {
     80 	sleepq_t *sq;
     81 	int i;
     82 
     83 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     85 		sq = &st->st_queues[i].st_queue;
     86 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     87 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     88 #else
     89 		sq = &st->st_queues[i];
     90 		sleepq_init(sq, lwp0.l_mutex);
     91 #endif
     92 	}
     93 }
     94 
     95 /*
     96  * sleepq_init:
     97  *
     98  *	Prepare a sleep queue for use.
     99  */
    100 void
    101 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
    102 {
    103 
    104 	sq->sq_waiters = 0;
    105 	sq->sq_mutex = mtx;
    106 	TAILQ_INIT(&sq->sq_queue);
    107 }
    108 
    109 /*
    110  * sleepq_remove:
    111  *
    112  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    113  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    114  *	to bring the LWP into memory.
    115  */
    116 int
    117 sleepq_remove(sleepq_t *sq, lwp_t *l)
    118 {
    119 	struct cpu_info *ci;
    120 
    121 	KASSERT(lwp_locked(l, sq->sq_mutex));
    122 	KASSERT(sq->sq_waiters > 0);
    123 
    124 	sq->sq_waiters--;
    125 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    126 
    127 #ifdef DIAGNOSTIC
    128 	if (sq->sq_waiters == 0)
    129 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    130 	else
    131 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    132 #endif
    133 
    134 	l->l_syncobj = &sched_syncobj;
    135 	l->l_wchan = NULL;
    136 	l->l_sleepq = NULL;
    137 	l->l_flag &= ~LW_SINTR;
    138 
    139 	ci = l->l_cpu;
    140 
    141 	/*
    142 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    143 	 * holds it stopped set it running again.
    144 	 */
    145 	if (l->l_stat != LSSLEEP) {
    146 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    147 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    148 		return 0;
    149 	}
    150 
    151 	/*
    152 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    153 	 * about to call mi_switch(), in which case it will yield.
    154 	 */
    155 	if ((l->l_flag & LW_RUNNING) != 0) {
    156 		l->l_stat = LSONPROC;
    157 		l->l_slptime = 0;
    158 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    159 		return 0;
    160 	}
    161 
    162 	/*
    163 	 * Set it running.  We'll try to get the last CPU that ran
    164 	 * this LWP to pick it up again.
    165 	 */
    166 	spc_lock(ci, true);
    167 	lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    168 	sched_setrunnable(l);
    169 	l->l_stat = LSRUN;
    170 	l->l_slptime = 0;
    171 	if ((l->l_flag & LW_INMEM) != 0) {
    172 		sched_enqueue(l, false);
    173 		if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
    174 			cpu_need_resched(ci, 0);
    175 		spc_unlock(ci, true);
    176 		return 0;
    177 	}
    178 
    179 	spc_unlock(ci, true);
    180 	return 1;
    181 }
    182 
    183 /*
    184  * sleepq_insert:
    185  *
    186  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    187  */
    188 inline void
    189 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    190 {
    191 	lwp_t *l2;
    192 	const int pri = lwp_eprio(l);
    193 
    194 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    195 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    196 			if (lwp_eprio(l2) > pri) {
    197 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    198 				return;
    199 			}
    200 		}
    201 	}
    202 
    203 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    204 }
    205 
    206 void
    207 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    208     syncobj_t *sobj)
    209 {
    210 	lwp_t *l = curlwp;
    211 
    212 	KASSERT(mutex_owned(sq->sq_mutex));
    213 	KASSERT(l->l_stat == LSONPROC);
    214 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    215 
    216 	l->l_syncobj = sobj;
    217 	l->l_wchan = wchan;
    218 	l->l_sleepq = sq;
    219 	l->l_wmesg = wmesg;
    220 	l->l_slptime = 0;
    221 	l->l_priority = pri;
    222 	l->l_stat = LSSLEEP;
    223 	l->l_sleeperr = 0;
    224 	l->l_nvcsw++;
    225 
    226 	sq->sq_waiters++;
    227 	sleepq_insert(sq, l, sobj);
    228 }
    229 
    230 void
    231 sleepq_switch(int timo, bool catch)
    232 {
    233 	lwp_t *l = curlwp;
    234 
    235 #ifdef KTRACE
    236 	if (KTRPOINT(l->l_proc, KTR_CSW))
    237 		ktrcsw(l, 1, 0);
    238 #endif
    239 
    240 	/*
    241 	 * If sleeping interruptably, check for pending signals, exits or
    242 	 * core dump events.
    243 	 */
    244 	if (catch) {
    245 		l->l_flag |= LW_SINTR;
    246 		if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
    247 			l->l_sleeperr = EPASSTHROUGH;
    248 			/* lwp_unsleep() will release the lock */
    249 			lwp_unsleep(l);
    250 			return;
    251 		}
    252 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    253 			l->l_flag &= ~LW_CANCELLED;
    254 			l->l_sleeperr = EINTR;
    255 			/* lwp_unsleep() will release the lock */
    256 			lwp_unsleep(l);
    257 			return;
    258 		}
    259 	}
    260 
    261 	if (timo)
    262 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    263 
    264 	mi_switch(l);
    265 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    266 
    267 	/*
    268 	 * When we reach this point, the LWP and sleep queue are unlocked.
    269 	 */
    270 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    271 }
    272 
    273 /*
    274  * sleepq_block:
    275  *
    276  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    277  *	queue must already be locked, and any interlock (such as the kernel
    278  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    279  *
    280  * 	sleepq_block() may return early under exceptional conditions, for
    281  * 	example if the LWP's containing process is exiting.
    282  */
    283 void
    284 sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    285 	     int timo, bool catch, syncobj_t *sobj)
    286 {
    287 
    288 	sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
    289 	sleepq_switch(timo, catch);
    290 }
    291 
    292 /*
    293  * sleepq_unblock:
    294  *
    295  *	After any intermediate step such as updating statistics, re-acquire
    296  *	the kernel lock and record the switch for ktrace.  Note that we are
    297  *	no longer on the sleep queue at this point.
    298  *
    299  *	This is split out from sleepq_block() in expectation that at some
    300  *	point in the future, LWPs may awake on different kernel stacks than
    301  *	those they went asleep on.
    302  */
    303 int
    304 sleepq_unblock(int timo, bool catch)
    305 {
    306 	int error, expired, sig;
    307 	struct proc *p;
    308 	lwp_t *l;
    309 
    310 	l = curlwp;
    311 	error = l->l_sleeperr;
    312 
    313 	if (timo) {
    314 		/*
    315 		 * Even if the callout appears to have fired, we need to
    316 		 * stop it in order to synchronise with other CPUs.
    317 		 */
    318 		expired = callout_expired(&l->l_tsleep_ch);
    319 		callout_stop(&l->l_tsleep_ch);
    320 		if (expired && error == 0)
    321 			error = EWOULDBLOCK;
    322 	}
    323 
    324 	if (catch && (error == 0 || error == EPASSTHROUGH)) {
    325 		l->l_sleeperr = 0;
    326 		p = l->l_proc;
    327 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    328 			error = EINTR;
    329 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    330 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() */
    331 			mutex_enter(&p->p_smutex);
    332 			if ((sig = issignal(l)) != 0)
    333 				error = sleepq_sigtoerror(l, sig);
    334 			mutex_exit(&p->p_smutex);
    335 			KERNEL_UNLOCK_LAST(l);
    336 		}
    337 		if (error == EPASSTHROUGH) {
    338 			/* Raced */
    339 			error = EINTR;
    340 		}
    341 	}
    342 
    343 #ifdef KTRACE
    344 	if (KTRPOINT(l->l_proc, KTR_CSW))
    345 		ktrcsw(l, 0, 0);
    346 #endif
    347 
    348 	KERNEL_LOCK(l->l_biglocks, l);
    349 	return error;
    350 }
    351 
    352 /*
    353  * sleepq_wake:
    354  *
    355  *	Wake zero or more LWPs blocked on a single wait channel.
    356  */
    357 lwp_t *
    358 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    359 {
    360 	lwp_t *l, *next;
    361 	int swapin = 0;
    362 
    363 	KASSERT(mutex_owned(sq->sq_mutex));
    364 
    365 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    366 		KASSERT(l->l_sleepq == sq);
    367 		next = TAILQ_NEXT(l, l_sleepchain);
    368 		if (l->l_wchan != wchan)
    369 			continue;
    370 		swapin |= sleepq_remove(sq, l);
    371 		if (--expected == 0)
    372 			break;
    373 	}
    374 
    375 	sleepq_unlock(sq);
    376 
    377 	/*
    378 	 * If there are newly awakend threads that need to be swapped in,
    379 	 * then kick the swapper into action.
    380 	 */
    381 	if (swapin)
    382 		uvm_kick_scheduler();
    383 
    384 	return l;
    385 }
    386 
    387 /*
    388  * sleepq_unsleep:
    389  *
    390  *	Remove an LWP from its sleep queue and set it runnable again.
    391  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    392  *	always release it.
    393  */
    394 void
    395 sleepq_unsleep(lwp_t *l)
    396 {
    397 	sleepq_t *sq = l->l_sleepq;
    398 	int swapin;
    399 
    400 	KASSERT(lwp_locked(l, NULL));
    401 	KASSERT(l->l_wchan != NULL);
    402 	KASSERT(l->l_mutex == sq->sq_mutex);
    403 
    404 	swapin = sleepq_remove(sq, l);
    405 	sleepq_unlock(sq);
    406 
    407 	if (swapin)
    408 		uvm_kick_scheduler();
    409 }
    410 
    411 /*
    412  * sleepq_timeout:
    413  *
    414  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    415  *	sleep queue.
    416  */
    417 void
    418 sleepq_timeout(void *arg)
    419 {
    420 	lwp_t *l = arg;
    421 
    422 	/*
    423 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    424 	 * current mutex will also be the sleep queue mutex.
    425 	 */
    426 	lwp_lock(l);
    427 
    428 	if (l->l_wchan == NULL) {
    429 		/* Somebody beat us to it. */
    430 		lwp_unlock(l);
    431 		return;
    432 	}
    433 
    434 	lwp_unsleep(l);
    435 }
    436 
    437 /*
    438  * sleepq_sigtoerror:
    439  *
    440  *	Given a signal number, interpret and return an error code.
    441  */
    442 int
    443 sleepq_sigtoerror(lwp_t *l, int sig)
    444 {
    445 	struct proc *p = l->l_proc;
    446 	int error;
    447 
    448 	KASSERT(mutex_owned(&p->p_smutex));
    449 
    450 	/*
    451 	 * If this sleep was canceled, don't let the syscall restart.
    452 	 */
    453 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    454 		error = EINTR;
    455 	else
    456 		error = ERESTART;
    457 
    458 	return error;
    459 }
    460 
    461 /*
    462  * sleepq_abort:
    463  *
    464  *	After a panic or during autoconfiguration, lower the interrupt
    465  *	priority level to give pending interrupts a chance to run, and
    466  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    467  *	always returns zero.
    468  */
    469 int
    470 sleepq_abort(kmutex_t *mtx, int unlock)
    471 {
    472 	extern int safepri;
    473 	int s;
    474 
    475 	s = splhigh();
    476 	splx(safepri);
    477 	splx(s);
    478 	if (mtx != NULL && unlock != 0)
    479 		mutex_exit(mtx);
    480 
    481 	return 0;
    482 }
    483 
    484 /*
    485  * sleepq_changepri:
    486  *
    487  *	Adjust the priority of an LWP residing on a sleepq.  This method
    488  *	will only alter the user priority; the effective priority is
    489  *	assumed to have been fixed at the time of insertion into the queue.
    490  */
    491 void
    492 sleepq_changepri(lwp_t *l, pri_t pri)
    493 {
    494 
    495 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    496 	l->l_usrpri = pri;
    497 }
    498 
    499 void
    500 sleepq_lendpri(lwp_t *l, pri_t pri)
    501 {
    502 	sleepq_t *sq = l->l_sleepq;
    503 	pri_t opri;
    504 
    505 	KASSERT(lwp_locked(l, sq->sq_mutex));
    506 
    507 	opri = lwp_eprio(l);
    508 	l->l_inheritedprio = pri;
    509 
    510 	if (lwp_eprio(l) != opri &&
    511 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    512 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    513 		sleepq_insert(sq, l, l->l_syncobj);
    514 	}
    515 }
    516