Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.4.2.12
      1 /*	$NetBSD: kern_sleepq.c,v 1.4.2.12 2007/04/16 23:31:20 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.4.2.12 2007/04/16 23:31:20 ad Exp $");
     46 
     47 #include "opt_ktrace.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/lock.h>
     51 #include <sys/kernel.h>
     52 #include <sys/cpu.h>
     53 #include <sys/pool.h>
     54 #include <sys/proc.h>
     55 #include <sys/resourcevar.h>
     56 #include <sys/sched.h>
     57 #include <sys/systm.h>
     58 #include <sys/sleepq.h>
     59 #ifdef KTRACE
     60 #include <sys/ktrace.h>
     61 #endif
     62 
     63 #include <uvm/uvm_extern.h>
     64 
     65 int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by ltsleep() and condition variables. */
     68 sleeptab_t	sleeptab;
     69 
     70 /*
     71  * sleeptab_init:
     72  *
     73  *	Initialize a sleep table.
     74  */
     75 void
     76 sleeptab_init(sleeptab_t *st)
     77 {
     78 	sleepq_t *sq;
     79 	int i;
     80 
     81 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82 		sq = &st->st_queues[i].st_queue;
     83 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     84 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     85 	}
     86 }
     87 
     88 /*
     89  * sleepq_init:
     90  *
     91  *	Prepare a sleep queue for use.
     92  */
     93 void
     94 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     95 {
     96 
     97 	sq->sq_waiters = 0;
     98 	sq->sq_mutex = mtx;
     99 	TAILQ_INIT(&sq->sq_queue);
    100 }
    101 
    102 /*
    103  * sleepq_remove:
    104  *
    105  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    106  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    107  *	to bring the LWP into memory.
    108  */
    109 int
    110 sleepq_remove(sleepq_t *sq, lwp_t *l)
    111 {
    112 	struct cpu_info *ci;
    113 
    114 	KASSERT(lwp_locked(l, sq->sq_mutex));
    115 	KASSERT(sq->sq_waiters > 0);
    116 
    117 	sq->sq_waiters--;
    118 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    119 
    120 #ifdef DIAGNOSTIC
    121 	if (sq->sq_waiters == 0)
    122 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    123 	else
    124 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    125 #endif
    126 
    127 	l->l_syncobj = &sched_syncobj;
    128 	l->l_wchan = NULL;
    129 	l->l_sleepq = NULL;
    130 	l->l_flag &= ~LW_SINTR;
    131 
    132 	ci = l->l_cpu;
    133 
    134 	/*
    135 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    136 	 * holds it stopped set it running again.
    137 	 */
    138 	if (l->l_stat != LSSLEEP) {
    139 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    140 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    141 		return 0;
    142 	}
    143 
    144 	/*
    145 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    146 	 * about to call mi_switch(), in which case it will yield.
    147 	 */
    148 	if ((l->l_flag & LW_RUNNING) != 0) {
    149 		l->l_stat = LSONPROC;
    150 		l->l_slptime = 0;
    151 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    152 		return 0;
    153 	}
    154 
    155 	/*
    156 	 * Set it running.  We'll try to get the last CPU that ran
    157 	 * this LWP to pick it up again.
    158 	 */
    159 	spc_lock(ci);
    160 	lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    161 	sched_setrunnable(l);
    162 	l->l_stat = LSRUN;
    163 	l->l_slptime = 0;
    164 	if ((l->l_flag & LW_INMEM) != 0) {
    165 		sched_enqueue(l, false);
    166 		if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
    167 			cpu_need_resched(ci, 0);
    168 		spc_unlock(ci);
    169 		return 0;
    170 	}
    171 
    172 	spc_unlock(ci);
    173 	return 1;
    174 }
    175 
    176 /*
    177  * sleepq_insert:
    178  *
    179  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    180  */
    181 inline void
    182 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    183 {
    184 	lwp_t *l2;
    185 	const int pri = lwp_eprio(l);
    186 
    187 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    188 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    189 			if (lwp_eprio(l2) > pri) {
    190 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    191 				return;
    192 			}
    193 		}
    194 	}
    195 
    196 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    197 }
    198 
    199 void
    200 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    201     syncobj_t *sobj)
    202 {
    203 	lwp_t *l = curlwp;
    204 
    205 	KASSERT(mutex_owned(sq->sq_mutex));
    206 	KASSERT(l->l_stat == LSONPROC);
    207 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    208 
    209 	l->l_syncobj = sobj;
    210 	l->l_wchan = wchan;
    211 	l->l_sleepq = sq;
    212 	l->l_wmesg = wmesg;
    213 	l->l_slptime = 0;
    214 	l->l_priority = pri;
    215 	l->l_stat = LSSLEEP;
    216 	l->l_sleeperr = 0;
    217 	l->l_nvcsw++;
    218 
    219 	sq->sq_waiters++;
    220 	sleepq_insert(sq, l, sobj);
    221 }
    222 
    223 void
    224 sleepq_switch(int timo, bool catch)
    225 {
    226 	lwp_t *l = curlwp;
    227 
    228 #ifdef KTRACE
    229 	if (KTRPOINT(l->l_proc, KTR_CSW))
    230 		ktrcsw(l, 1, 0);
    231 #endif
    232 
    233 	/*
    234 	 * If sleeping interruptably, check for pending signals, exits or
    235 	 * core dump events.
    236 	 */
    237 	if (catch) {
    238 		l->l_flag |= LW_SINTR;
    239 		if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
    240 			l->l_sleeperr = EPASSTHROUGH;
    241 			/* lwp_unsleep() will release the lock */
    242 			lwp_unsleep(l);
    243 			return;
    244 		}
    245 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    246 			l->l_flag &= ~LW_CANCELLED;
    247 			l->l_sleeperr = EINTR;
    248 			/* lwp_unsleep() will release the lock */
    249 			lwp_unsleep(l);
    250 			return;
    251 		}
    252 	}
    253 
    254 	if (timo)
    255 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    256 
    257 	mi_switch(l);
    258 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    259 
    260 	/*
    261 	 * When we reach this point, the LWP and sleep queue are unlocked.
    262 	 */
    263 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    264 }
    265 
    266 /*
    267  * sleepq_block:
    268  *
    269  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    270  *	queue must already be locked, and any interlock (such as the kernel
    271  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    272  *
    273  * 	sleepq_block() may return early under exceptional conditions, for
    274  * 	example if the LWP's containing process is exiting.
    275  */
    276 void
    277 sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    278 	     int timo, bool catch, syncobj_t *sobj)
    279 {
    280 
    281 	sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
    282 	sleepq_switch(timo, catch);
    283 }
    284 
    285 /*
    286  * sleepq_unblock:
    287  *
    288  *	After any intermediate step such as updating statistics, re-acquire
    289  *	the kernel lock and record the switch for ktrace.  Note that we are
    290  *	no longer on the sleep queue at this point.
    291  *
    292  *	This is split out from sleepq_block() in expectation that at some
    293  *	point in the future, LWPs may awake on different kernel stacks than
    294  *	those they went asleep on.
    295  */
    296 int
    297 sleepq_unblock(int timo, bool catch)
    298 {
    299 	int error, expired, sig;
    300 	struct proc *p;
    301 	lwp_t *l;
    302 
    303 	l = curlwp;
    304 	error = l->l_sleeperr;
    305 
    306 	if (timo) {
    307 		/*
    308 		 * Even if the callout appears to have fired, we need to
    309 		 * stop it in order to synchronise with other CPUs.
    310 		 */
    311 		expired = callout_expired(&l->l_tsleep_ch);
    312 		callout_stop(&l->l_tsleep_ch);
    313 		if (expired && error == 0)
    314 			error = EWOULDBLOCK;
    315 	}
    316 
    317 	if (catch && (error == 0 || error == EPASSTHROUGH)) {
    318 		l->l_sleeperr = 0;
    319 		p = l->l_proc;
    320 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    321 			error = EINTR;
    322 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    323 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() */
    324 			mutex_enter(&p->p_smutex);
    325 			if ((sig = issignal(l)) != 0)
    326 				error = sleepq_sigtoerror(l, sig);
    327 			mutex_exit(&p->p_smutex);
    328 			KERNEL_UNLOCK_LAST(l);
    329 		}
    330 		if (error == EPASSTHROUGH) {
    331 			/* Raced */
    332 			error = EINTR;
    333 		}
    334 	}
    335 
    336 #ifdef KTRACE
    337 	if (KTRPOINT(l->l_proc, KTR_CSW))
    338 		ktrcsw(l, 0, 0);
    339 #endif
    340 
    341 	KERNEL_LOCK(l->l_biglocks, l);
    342 	return error;
    343 }
    344 
    345 /*
    346  * sleepq_wake:
    347  *
    348  *	Wake zero or more LWPs blocked on a single wait channel.
    349  */
    350 lwp_t *
    351 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    352 {
    353 	lwp_t *l, *next;
    354 	int swapin = 0;
    355 
    356 	KASSERT(mutex_owned(sq->sq_mutex));
    357 
    358 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    359 		KASSERT(l->l_sleepq == sq);
    360 		next = TAILQ_NEXT(l, l_sleepchain);
    361 		if (l->l_wchan != wchan)
    362 			continue;
    363 		swapin |= sleepq_remove(sq, l);
    364 		if (--expected == 0)
    365 			break;
    366 	}
    367 
    368 	sleepq_unlock(sq);
    369 
    370 	/*
    371 	 * If there are newly awakend threads that need to be swapped in,
    372 	 * then kick the swapper into action.
    373 	 */
    374 	if (swapin)
    375 		uvm_kick_scheduler();
    376 
    377 	return l;
    378 }
    379 
    380 /*
    381  * sleepq_unsleep:
    382  *
    383  *	Remove an LWP from its sleep queue and set it runnable again.
    384  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    385  *	always release it.
    386  */
    387 void
    388 sleepq_unsleep(lwp_t *l)
    389 {
    390 	sleepq_t *sq = l->l_sleepq;
    391 	int swapin;
    392 
    393 	KASSERT(lwp_locked(l, NULL));
    394 	KASSERT(l->l_wchan != NULL);
    395 	KASSERT(l->l_mutex == sq->sq_mutex);
    396 
    397 	swapin = sleepq_remove(sq, l);
    398 	sleepq_unlock(sq);
    399 
    400 	if (swapin)
    401 		uvm_kick_scheduler();
    402 }
    403 
    404 /*
    405  * sleepq_timeout:
    406  *
    407  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    408  *	sleep queue.
    409  */
    410 void
    411 sleepq_timeout(void *arg)
    412 {
    413 	lwp_t *l = arg;
    414 
    415 	/*
    416 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    417 	 * current mutex will also be the sleep queue mutex.
    418 	 */
    419 	lwp_lock(l);
    420 
    421 	if (l->l_wchan == NULL) {
    422 		/* Somebody beat us to it. */
    423 		lwp_unlock(l);
    424 		return;
    425 	}
    426 
    427 	lwp_unsleep(l);
    428 }
    429 
    430 /*
    431  * sleepq_sigtoerror:
    432  *
    433  *	Given a signal number, interpret and return an error code.
    434  */
    435 int
    436 sleepq_sigtoerror(lwp_t *l, int sig)
    437 {
    438 	struct proc *p = l->l_proc;
    439 	int error;
    440 
    441 	KASSERT(mutex_owned(&p->p_smutex));
    442 
    443 	/*
    444 	 * If this sleep was canceled, don't let the syscall restart.
    445 	 */
    446 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    447 		error = EINTR;
    448 	else
    449 		error = ERESTART;
    450 
    451 	return error;
    452 }
    453 
    454 /*
    455  * sleepq_abort:
    456  *
    457  *	After a panic or during autoconfiguration, lower the interrupt
    458  *	priority level to give pending interrupts a chance to run, and
    459  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    460  *	always returns zero.
    461  */
    462 int
    463 sleepq_abort(kmutex_t *mtx, int unlock)
    464 {
    465 	extern int safepri;
    466 	int s;
    467 
    468 	s = splhigh();
    469 	splx(safepri);
    470 	splx(s);
    471 	if (mtx != NULL && unlock != 0)
    472 		mutex_exit(mtx);
    473 
    474 	return 0;
    475 }
    476 
    477 /*
    478  * sleepq_changepri:
    479  *
    480  *	Adjust the priority of an LWP residing on a sleepq.  This method
    481  *	will only alter the user priority; the effective priority is
    482  *	assumed to have been fixed at the time of insertion into the queue.
    483  */
    484 void
    485 sleepq_changepri(lwp_t *l, pri_t pri)
    486 {
    487 
    488 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    489 	l->l_usrpri = pri;
    490 }
    491 
    492 void
    493 sleepq_lendpri(lwp_t *l, pri_t pri)
    494 {
    495 	sleepq_t *sq = l->l_sleepq;
    496 	pri_t opri;
    497 
    498 	KASSERT(lwp_locked(l, sq->sq_mutex));
    499 
    500 	opri = lwp_eprio(l);
    501 	l->l_inheritedprio = pri;
    502 
    503 	if (lwp_eprio(l) != opri &&
    504 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    505 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    506 		sleepq_insert(sq, l, l->l_syncobj);
    507 	}
    508 }
    509