Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.4.2.14
      1 /*	$NetBSD: kern_sleepq.c,v 1.4.2.14 2007/04/21 15:50:16 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.4.2.14 2007/04/21 15:50:16 ad Exp $");
     46 
     47 #include "opt_ktrace.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/lock.h>
     51 #include <sys/kernel.h>
     52 #include <sys/cpu.h>
     53 #include <sys/pool.h>
     54 #include <sys/proc.h>
     55 #include <sys/resourcevar.h>
     56 #include <sys/sched.h>
     57 #include <sys/systm.h>
     58 #include <sys/sleepq.h>
     59 #ifdef KTRACE
     60 #include <sys/ktrace.h>
     61 #endif
     62 
     63 #include <uvm/uvm_extern.h>
     64 
     65 int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by ltsleep() and condition variables. */
     68 sleeptab_t	sleeptab;
     69 
     70 /*
     71  * sleeptab_init:
     72  *
     73  *	Initialize a sleep table.
     74  */
     75 void
     76 sleeptab_init(sleeptab_t *st)
     77 {
     78 	sleepq_t *sq;
     79 	int i;
     80 
     81 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82 		sq = &st->st_queues[i].st_queue;
     83 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     84 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     85 	}
     86 }
     87 
     88 /*
     89  * sleepq_init:
     90  *
     91  *	Prepare a sleep queue for use.
     92  */
     93 void
     94 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     95 {
     96 
     97 	sq->sq_waiters = 0;
     98 	sq->sq_mutex = mtx;
     99 	TAILQ_INIT(&sq->sq_queue);
    100 }
    101 
    102 /*
    103  * sleepq_remove:
    104  *
    105  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    106  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    107  *	to bring the LWP into memory.
    108  */
    109 int
    110 sleepq_remove(sleepq_t *sq, lwp_t *l)
    111 {
    112 	struct cpu_info *ci;
    113 
    114 	KASSERT(lwp_locked(l, sq->sq_mutex));
    115 	KASSERT(sq->sq_waiters > 0);
    116 
    117 	sq->sq_waiters--;
    118 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    119 
    120 #ifdef DIAGNOSTIC
    121 	if (sq->sq_waiters == 0)
    122 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    123 	else
    124 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    125 #endif
    126 
    127 	l->l_syncobj = &sched_syncobj;
    128 	l->l_wchan = NULL;
    129 	l->l_sleepq = NULL;
    130 	l->l_flag &= ~LW_SINTR;
    131 
    132 	ci = l->l_cpu;
    133 
    134 	/*
    135 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    136 	 * holds it stopped set it running again.
    137 	 */
    138 	if (l->l_stat != LSSLEEP) {
    139 	 	KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    140 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    141 		return 0;
    142 	}
    143 
    144 	/*
    145 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    146 	 * about to call mi_switch(), in which case it will yield.
    147 	 */
    148 	if ((l->l_flag & LW_RUNNING) != 0) {
    149 		l->l_stat = LSONPROC;
    150 		l->l_slptime = 0;
    151 		lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    152 		return 0;
    153 	}
    154 
    155 	/*
    156 	 * Set it running.  We'll try to get the last CPU that ran
    157 	 * this LWP to pick it up again.
    158 	 */
    159 	spc_lock(ci);
    160 	lwp_setlock(l, ci->ci_schedstate.spc_mutex);
    161 	sched_setrunnable(l);
    162 	l->l_stat = LSRUN;
    163 	l->l_slptime = 0;
    164 	if ((l->l_flag & LW_INMEM) != 0) {
    165 		sched_enqueue(l, false);
    166 		if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
    167 			cpu_need_resched(ci, 0);
    168 		spc_unlock(ci);
    169 		return 0;
    170 	}
    171 
    172 	spc_unlock(ci);
    173 	return 1;
    174 }
    175 
    176 /*
    177  * sleepq_insert:
    178  *
    179  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    180  */
    181 inline void
    182 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    183 {
    184 	lwp_t *l2;
    185 	const int pri = lwp_eprio(l);
    186 
    187 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    188 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    189 			if (lwp_eprio(l2) > pri) {
    190 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    191 				return;
    192 			}
    193 		}
    194 	}
    195 
    196 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    197 }
    198 
    199 /*
    200  * sleepq_enqueue:
    201  *
    202  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    203  *	queue must already be locked, and any interlock (such as the kernel
    204  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    205  */
    206 void
    207 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    208 	       syncobj_t *sobj)
    209 {
    210 	lwp_t *l = curlwp;
    211 
    212 	KASSERT(mutex_owned(sq->sq_mutex));
    213 	KASSERT(l->l_stat == LSONPROC);
    214 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    215 
    216 	l->l_syncobj = sobj;
    217 	l->l_wchan = wchan;
    218 	l->l_sleepq = sq;
    219 	l->l_wmesg = wmesg;
    220 	l->l_slptime = 0;
    221 	l->l_priority = pri;
    222 	l->l_stat = LSSLEEP;
    223 	l->l_sleeperr = 0;
    224 
    225 	sq->sq_waiters++;
    226 	sleepq_insert(sq, l, sobj);
    227 }
    228 
    229 /*
    230  * sleepq_block:
    231  *
    232  *	After any intermediate step such as releasing an interlock, switch.
    233  * 	sleepq_block() may return early under exceptional conditions, for
    234  * 	example if the LWP's containing process is exiting.
    235  */
    236 int
    237 sleepq_block(int timo, bool catch)
    238 {
    239 	int error = 0, expired, sig;
    240 	struct proc *p;
    241 	lwp_t *l = curlwp;
    242 
    243 #ifdef KTRACE
    244 	if (KTRPOINT(l->l_proc, KTR_CSW))
    245 		ktrcsw(l, 1, 0);
    246 #endif
    247 
    248 	/*
    249 	 * If sleeping interruptably, check for pending signals, exits or
    250 	 * core dump events.
    251 	 */
    252 	if (catch) {
    253 		l->l_flag |= LW_SINTR;
    254 		if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
    255 			/* lwp_unsleep() will release the lock */
    256 			lwp_unsleep(l);
    257 			error = EINTR;
    258 			goto catchit;
    259 		}
    260 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    261 			l->l_flag &= ~LW_CANCELLED;
    262 			/* lwp_unsleep() will release the lock */
    263 			lwp_unsleep(l);
    264 			error = EINTR;
    265 			goto catchit;
    266 		}
    267 	}
    268 
    269 	if (timo)
    270 		callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
    271 
    272 	mi_switch(l);
    273 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    274 
    275 	/*
    276 	 * When we reach this point, the LWP and sleep queue are unlocked.
    277 	 */
    278 	if (timo) {
    279 		/*
    280 		 * Even if the callout appears to have fired, we need to
    281 		 * stop it in order to synchronise with other CPUs.
    282 		 */
    283 		expired = callout_expired(&l->l_tsleep_ch);
    284 		callout_stop(&l->l_tsleep_ch);
    285 		if (expired)
    286 			error = EWOULDBLOCK;
    287 	}
    288 
    289 	if (catch && error == 0) {
    290   catchit:
    291 		p = l->l_proc;
    292 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    293 			error = EINTR;
    294 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    295 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() */
    296 			mutex_enter(&p->p_smutex);
    297 			if ((sig = issignal(l)) != 0)
    298 				error = sleepq_sigtoerror(l, sig);
    299 			mutex_exit(&p->p_smutex);
    300 			KERNEL_UNLOCK_LAST(l);
    301 		}
    302 	}
    303 
    304 #ifdef KTRACE
    305 	if (KTRPOINT(l->l_proc, KTR_CSW))
    306 		ktrcsw(l, 0, 0);
    307 #endif
    308 
    309 	KERNEL_LOCK(l->l_biglocks, l);
    310 	return error;
    311 }
    312 
    313 /*
    314  * sleepq_wake:
    315  *
    316  *	Wake zero or more LWPs blocked on a single wait channel.
    317  */
    318 lwp_t *
    319 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    320 {
    321 	lwp_t *l, *next;
    322 	int swapin = 0;
    323 
    324 	KASSERT(mutex_owned(sq->sq_mutex));
    325 
    326 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    327 		KASSERT(l->l_sleepq == sq);
    328 		next = TAILQ_NEXT(l, l_sleepchain);
    329 		if (l->l_wchan != wchan)
    330 			continue;
    331 		swapin |= sleepq_remove(sq, l);
    332 		if (--expected == 0)
    333 			break;
    334 	}
    335 
    336 	sleepq_unlock(sq);
    337 
    338 	/*
    339 	 * If there are newly awakend threads that need to be swapped in,
    340 	 * then kick the swapper into action.
    341 	 */
    342 	if (swapin)
    343 		uvm_kick_scheduler();
    344 
    345 	return l;
    346 }
    347 
    348 /*
    349  * sleepq_unsleep:
    350  *
    351  *	Remove an LWP from its sleep queue and set it runnable again.
    352  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    353  *	always release it.
    354  */
    355 void
    356 sleepq_unsleep(lwp_t *l)
    357 {
    358 	sleepq_t *sq = l->l_sleepq;
    359 	int swapin;
    360 
    361 	KASSERT(lwp_locked(l, NULL));
    362 	KASSERT(l->l_wchan != NULL);
    363 	KASSERT(l->l_mutex == sq->sq_mutex);
    364 
    365 	swapin = sleepq_remove(sq, l);
    366 	sleepq_unlock(sq);
    367 
    368 	if (swapin)
    369 		uvm_kick_scheduler();
    370 }
    371 
    372 /*
    373  * sleepq_timeout:
    374  *
    375  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    376  *	sleep queue.
    377  */
    378 void
    379 sleepq_timeout(void *arg)
    380 {
    381 	lwp_t *l = arg;
    382 
    383 	/*
    384 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    385 	 * current mutex will also be the sleep queue mutex.
    386 	 */
    387 	lwp_lock(l);
    388 
    389 	if (l->l_wchan == NULL) {
    390 		/* Somebody beat us to it. */
    391 		lwp_unlock(l);
    392 		return;
    393 	}
    394 
    395 	lwp_unsleep(l);
    396 }
    397 
    398 /*
    399  * sleepq_sigtoerror:
    400  *
    401  *	Given a signal number, interpret and return an error code.
    402  */
    403 int
    404 sleepq_sigtoerror(lwp_t *l, int sig)
    405 {
    406 	struct proc *p = l->l_proc;
    407 	int error;
    408 
    409 	KASSERT(mutex_owned(&p->p_smutex));
    410 
    411 	/*
    412 	 * If this sleep was canceled, don't let the syscall restart.
    413 	 */
    414 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    415 		error = EINTR;
    416 	else
    417 		error = ERESTART;
    418 
    419 	return error;
    420 }
    421 
    422 /*
    423  * sleepq_abort:
    424  *
    425  *	After a panic or during autoconfiguration, lower the interrupt
    426  *	priority level to give pending interrupts a chance to run, and
    427  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    428  *	always returns zero.
    429  */
    430 int
    431 sleepq_abort(kmutex_t *mtx, int unlock)
    432 {
    433 	extern int safepri;
    434 	int s;
    435 
    436 	s = splhigh();
    437 	splx(safepri);
    438 	splx(s);
    439 	if (mtx != NULL && unlock != 0)
    440 		mutex_exit(mtx);
    441 
    442 	return 0;
    443 }
    444 
    445 /*
    446  * sleepq_changepri:
    447  *
    448  *	Adjust the priority of an LWP residing on a sleepq.  This method
    449  *	will only alter the user priority; the effective priority is
    450  *	assumed to have been fixed at the time of insertion into the queue.
    451  */
    452 void
    453 sleepq_changepri(lwp_t *l, pri_t pri)
    454 {
    455 
    456 	KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
    457 	l->l_usrpri = pri;
    458 }
    459 
    460 void
    461 sleepq_lendpri(lwp_t *l, pri_t pri)
    462 {
    463 	sleepq_t *sq = l->l_sleepq;
    464 	pri_t opri;
    465 
    466 	KASSERT(lwp_locked(l, sq->sq_mutex));
    467 
    468 	opri = lwp_eprio(l);
    469 	l->l_inheritedprio = pri;
    470 
    471 	if (lwp_eprio(l) != opri &&
    472 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    473 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    474 		sleepq_insert(sq, l, l->l_syncobj);
    475 	}
    476 }
    477