kern_sleepq.c revision 1.4.2.6 1 /* $NetBSD: kern_sleepq.c,v 1.4.2.6 2007/03/17 16:54:37 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.4.2.6 2007/03/17 16:54:37 rmind Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/cpu.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/systm.h>
60 #include <sys/sleepq.h>
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64
65 #include <uvm/uvm_extern.h>
66
67 int sleepq_sigtoerror(struct lwp *, int);
68 void updatepri(struct lwp *);
69
70 /* General purpose sleep table, used by ltsleep() and condition variables. */
71 sleeptab_t sleeptab;
72
73 /*
74 * sleeptab_init:
75 *
76 * Initialize a sleep table.
77 */
78 void
79 sleeptab_init(sleeptab_t *st)
80 {
81 sleepq_t *sq;
82 int i;
83
84 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
85 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
86 sq = &st->st_queues[i].st_queue;
87 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
88 sleepq_init(sq, &st->st_queues[i].st_mutex);
89 #else
90 sq = &st->st_queues[i];
91 sleepq_init(sq, &sched_mutex);
92 #endif
93 }
94 }
95
96 /*
97 * sleepq_init:
98 *
99 * Prepare a sleep queue for use.
100 */
101 void
102 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
103 {
104
105 sq->sq_waiters = 0;
106 sq->sq_mutex = mtx;
107 TAILQ_INIT(&sq->sq_queue);
108 }
109
110 /*
111 * sleepq_remove:
112 *
113 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
114 * the LWP is swapped out; if so the caller needs to awaken the swapper
115 * to bring the LWP into memory.
116 */
117 int
118 sleepq_remove(sleepq_t *sq, struct lwp *l)
119 {
120 struct cpu_info *ci;
121
122 KASSERT(lwp_locked(l, sq->sq_mutex));
123 KASSERT(sq->sq_waiters > 0);
124
125 sq->sq_waiters--;
126 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
127
128 #ifdef DIAGNOSTIC
129 if (sq->sq_waiters == 0)
130 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
131 else
132 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
133 #endif
134
135 l->l_syncobj = &sched_syncobj;
136 l->l_wchan = NULL;
137 l->l_sleepq = NULL;
138 l->l_flag &= ~LW_SINTR;
139
140 /*
141 * If not sleeping, the LWP must have been suspended. Let whoever
142 * holds it stopped set it running again.
143 */
144 if (l->l_stat != LSSLEEP) {
145 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
146 lwp_setlock(l, &sched_mutex);
147 return 0;
148 }
149
150 sched_lock(1);
151 lwp_setlock(l, &sched_mutex);
152
153 /*
154 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
155 * about to call mi_switch(), in which case it will yield.
156 *
157 * XXXSMP Will need to change for preemption.
158 */
159 ci = l->l_cpu;
160 #ifdef MULTIPROCESSOR
161 if (ci->ci_curlwp == l) {
162 #else
163 if (l == curlwp) {
164 #endif
165 l->l_stat = LSONPROC;
166 l->l_slptime = 0;
167 sched_unlock(1);
168 return 0;
169 }
170
171 /*
172 * Set it running. We'll try to get the last CPU that ran
173 * this LWP to pick it up again.
174 */
175 sched_setrunnable(l);
176 l->l_stat = LSRUN;
177 l->l_slptime = 0;
178 if ((l->l_flag & LW_INMEM) != 0) {
179 sched_enqueue(l, false);
180 if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
181 cpu_need_resched(ci, 0);
182 sched_unlock(1);
183 return 0;
184 }
185
186 sched_unlock(1);
187 return 1;
188 }
189
190 /*
191 * sleepq_insert:
192 *
193 * Insert an LWP into the sleep queue, optionally sorting by priority.
194 */
195 inline void
196 sleepq_insert(sleepq_t *sq, struct lwp *l, syncobj_t *sobj)
197 {
198 struct lwp *l2;
199 const int pri = lwp_eprio(l);
200
201 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
202 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
203 if (lwp_eprio(l2) > pri) {
204 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
205 return;
206 }
207 }
208 }
209
210 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
211 }
212
213 void
214 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
215 syncobj_t *sobj)
216 {
217 struct lwp *l = curlwp;
218
219 KASSERT(mutex_owned(sq->sq_mutex));
220 KASSERT(l->l_stat == LSONPROC);
221 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
222
223 l->l_syncobj = sobj;
224 l->l_wchan = wchan;
225 l->l_sleepq = sq;
226 l->l_wmesg = wmesg;
227 l->l_slptime = 0;
228 l->l_priority = pri;
229 l->l_stat = LSSLEEP;
230 l->l_sleeperr = 0;
231 l->l_nvcsw++;
232
233 sq->sq_waiters++;
234 sleepq_insert(sq, l, sobj);
235 }
236
237 void
238 sleepq_switch(int timo, int catch)
239 {
240 struct lwp *l = curlwp;
241
242 #ifdef KTRACE
243 if (KTRPOINT(l->l_proc, KTR_CSW))
244 ktrcsw(l, 1, 0);
245 #endif
246
247 /*
248 * If sleeping interruptably, check for pending signals, exits or
249 * core dump events.
250 */
251 if (catch) {
252 l->l_flag |= LW_SINTR;
253 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
254 l->l_sleeperr = EPASSTHROUGH;
255 /* lwp_unsleep() will release the lock */
256 lwp_unsleep(l);
257 return;
258 }
259 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
260 l->l_flag &= ~LW_CANCELLED;
261 l->l_sleeperr = EINTR;
262 /* lwp_unsleep() will release the lock */
263 lwp_unsleep(l);
264 return;
265 }
266 }
267
268 if (timo)
269 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
270
271 mi_switch(l);
272 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
273
274 /*
275 * When we reach this point, the LWP and sleep queue are unlocked.
276 */
277 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
278 }
279
280 /*
281 * sleepq_block:
282 *
283 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
284 * queue must already be locked, and any interlock (such as the kernel
285 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
286 *
287 * sleepq_block() may return early under exceptional conditions, for
288 * example if the LWP's containing process is exiting.
289 */
290 void
291 sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
292 int timo, int catch, syncobj_t *sobj)
293 {
294
295 sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
296 sleepq_switch(timo, catch);
297 }
298
299 /*
300 * sleepq_unblock:
301 *
302 * After any intermediate step such as updating statistics, re-acquire
303 * the kernel lock and record the switch for ktrace. Note that we are
304 * no longer on the sleep queue at this point.
305 *
306 * This is split out from sleepq_block() in expectation that at some
307 * point in the future, LWPs may awake on different kernel stacks than
308 * those they went asleep on.
309 */
310 int
311 sleepq_unblock(int timo, int catch)
312 {
313 int error, expired, sig;
314 struct proc *p;
315 struct lwp *l;
316
317 l = curlwp;
318 error = l->l_sleeperr;
319
320 if (timo) {
321 /*
322 * Even if the callout appears to have fired, we need to
323 * stop it in order to synchronise with other CPUs.
324 */
325 expired = callout_expired(&l->l_tsleep_ch);
326 callout_stop(&l->l_tsleep_ch);
327 if (expired && error == 0)
328 error = EWOULDBLOCK;
329 }
330
331 if (catch && (error == 0 || error == EPASSTHROUGH)) {
332 l->l_sleeperr = 0;
333 p = l->l_proc;
334 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
335 error = EINTR;
336 else if ((l->l_flag & LW_PENDSIG) != 0) {
337 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
338 mutex_enter(&p->p_smutex);
339 if ((sig = issignal(l)) != 0)
340 error = sleepq_sigtoerror(l, sig);
341 mutex_exit(&p->p_smutex);
342 KERNEL_UNLOCK_LAST(l);
343 }
344 if (error == EPASSTHROUGH) {
345 /* Raced */
346 error = EINTR;
347 }
348 }
349
350 #ifdef KTRACE
351 if (KTRPOINT(l->l_proc, KTR_CSW))
352 ktrcsw(l, 0, 0);
353 #endif
354
355 KERNEL_LOCK(l->l_biglocks, l);
356 return error;
357 }
358
359 /*
360 * sleepq_wake:
361 *
362 * Wake zero or more LWPs blocked on a single wait channel.
363 */
364 void
365 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
366 {
367 struct lwp *l, *next;
368 int swapin = 0;
369
370 KASSERT(mutex_owned(sq->sq_mutex));
371
372 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
373 KASSERT(l->l_sleepq == sq);
374 next = TAILQ_NEXT(l, l_sleepchain);
375 if (l->l_wchan != wchan)
376 continue;
377 swapin |= sleepq_remove(sq, l);
378 if (--expected == 0)
379 break;
380 }
381
382 sleepq_unlock(sq);
383
384 /*
385 * If there are newly awakend threads that need to be swapped in,
386 * then kick the swapper into action.
387 */
388 if (swapin)
389 uvm_kick_scheduler();
390 }
391
392 /*
393 * sleepq_unsleep:
394 *
395 * Remove an LWP from its sleep queue and set it runnable again.
396 * sleepq_unsleep() is called with the LWP's mutex held, and will
397 * always release it.
398 */
399 void
400 sleepq_unsleep(struct lwp *l)
401 {
402 sleepq_t *sq = l->l_sleepq;
403 int swapin;
404
405 KASSERT(lwp_locked(l, NULL));
406 KASSERT(l->l_wchan != NULL);
407 KASSERT(l->l_mutex == sq->sq_mutex);
408
409 swapin = sleepq_remove(sq, l);
410 sleepq_unlock(sq);
411
412 if (swapin)
413 uvm_kick_scheduler();
414 }
415
416 /*
417 * sleepq_timeout:
418 *
419 * Entered via the callout(9) subsystem to time out an LWP that is on a
420 * sleep queue.
421 */
422 void
423 sleepq_timeout(void *arg)
424 {
425 struct lwp *l = arg;
426
427 /*
428 * Lock the LWP. Assuming it's still on the sleep queue, its
429 * current mutex will also be the sleep queue mutex.
430 */
431 lwp_lock(l);
432
433 if (l->l_wchan == NULL) {
434 /* Somebody beat us to it. */
435 lwp_unlock(l);
436 return;
437 }
438
439 lwp_unsleep(l);
440 }
441
442 /*
443 * sleepq_sigtoerror:
444 *
445 * Given a signal number, interpret and return an error code.
446 */
447 int
448 sleepq_sigtoerror(struct lwp *l, int sig)
449 {
450 struct proc *p = l->l_proc;
451 int error;
452
453 KASSERT(mutex_owned(&p->p_smutex));
454
455 /*
456 * If this sleep was canceled, don't let the syscall restart.
457 */
458 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
459 error = EINTR;
460 else
461 error = ERESTART;
462
463 return error;
464 }
465
466 /*
467 * sleepq_abort:
468 *
469 * After a panic or during autoconfiguration, lower the interrupt
470 * priority level to give pending interrupts a chance to run, and
471 * then return. Called if sleepq_dontsleep() returns non-zero, and
472 * always returns zero.
473 */
474 int
475 sleepq_abort(kmutex_t *mtx, int unlock)
476 {
477 extern int safepri;
478 int s;
479
480 s = splhigh();
481 splx(safepri);
482 splx(s);
483 if (mtx != NULL && unlock != 0)
484 mutex_exit(mtx);
485
486 return 0;
487 }
488
489 /*
490 * sleepq_changepri:
491 *
492 * Adjust the priority of an LWP residing on a sleepq. This method
493 * will only alter the user priority; the effective priority is
494 * assumed to have been fixed at the time of insertion into the queue.
495 */
496 void
497 sleepq_changepri(struct lwp *l, pri_t pri)
498 {
499
500 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
501 l->l_usrpri = pri;
502 }
503
504 void
505 sleepq_lendpri(struct lwp *l, pri_t pri)
506 {
507 sleepq_t *sq = l->l_sleepq;
508 pri_t opri;
509
510 KASSERT(lwp_locked(l, sq->sq_mutex));
511
512 opri = lwp_eprio(l);
513 l->l_inheritedprio = pri;
514
515 if (lwp_eprio(l) != opri &&
516 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
517 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
518 sleepq_insert(sq, l, l->l_syncobj);
519 }
520 }
521