kern_sleepq.c revision 1.43 1 /* $NetBSD: kern_sleepq.c,v 1.43 2011/09/03 10:28:33 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.43 2011/09/03 10:28:33 christos Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sa.h>
47 #include <sys/savar.h>
48 #include <sys/sched.h>
49 #include <sys/systm.h>
50 #include <sys/sleepq.h>
51 #include <sys/ktrace.h>
52
53 #include "opt_sa.h"
54
55 static int sleepq_sigtoerror(lwp_t *, int);
56
57 /* General purpose sleep table, used by ltsleep() and condition variables. */
58 sleeptab_t sleeptab __cacheline_aligned;
59
60 /*
61 * sleeptab_init:
62 *
63 * Initialize a sleep table.
64 */
65 void
66 sleeptab_init(sleeptab_t *st)
67 {
68 sleepq_t *sq;
69 int i;
70
71 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
72 sq = &st->st_queues[i].st_queue;
73 st->st_queues[i].st_mutex =
74 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
75 sleepq_init(sq);
76 }
77 }
78
79 /*
80 * sleepq_init:
81 *
82 * Prepare a sleep queue for use.
83 */
84 void
85 sleepq_init(sleepq_t *sq)
86 {
87
88 TAILQ_INIT(sq);
89 }
90
91 /*
92 * sleepq_remove:
93 *
94 * Remove an LWP from a sleep queue and wake it up.
95 */
96 void
97 sleepq_remove(sleepq_t *sq, lwp_t *l)
98 {
99 struct schedstate_percpu *spc;
100 struct cpu_info *ci;
101
102 KASSERT(lwp_locked(l, NULL));
103
104 TAILQ_REMOVE(sq, l, l_sleepchain);
105 l->l_syncobj = &sched_syncobj;
106 l->l_wchan = NULL;
107 l->l_sleepq = NULL;
108 l->l_flag &= ~LW_SINTR;
109
110 ci = l->l_cpu;
111 spc = &ci->ci_schedstate;
112
113 /*
114 * If not sleeping, the LWP must have been suspended. Let whoever
115 * holds it stopped set it running again.
116 */
117 if (l->l_stat != LSSLEEP) {
118 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
119 lwp_setlock(l, spc->spc_lwplock);
120 return;
121 }
122
123 /*
124 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
125 * about to call mi_switch(), in which case it will yield.
126 */
127 if ((l->l_pflag & LP_RUNNING) != 0) {
128 l->l_stat = LSONPROC;
129 l->l_slptime = 0;
130 lwp_setlock(l, spc->spc_lwplock);
131 return;
132 }
133
134 /* Update sleep time delta, call the wake-up handler of scheduler */
135 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
136 sched_wakeup(l);
137
138 /* Look for a CPU to wake up */
139 l->l_cpu = sched_takecpu(l);
140 ci = l->l_cpu;
141 spc = &ci->ci_schedstate;
142
143 /*
144 * Set it running.
145 */
146 spc_lock(ci);
147 lwp_setlock(l, spc->spc_mutex);
148 #ifdef KERN_SA
149 if (l->l_proc->p_sa != NULL)
150 sa_awaken(l);
151 #endif /* KERN_SA */
152 sched_setrunnable(l);
153 l->l_stat = LSRUN;
154 l->l_slptime = 0;
155 sched_enqueue(l, false);
156 spc_unlock(ci);
157 }
158
159 /*
160 * sleepq_insert:
161 *
162 * Insert an LWP into the sleep queue, optionally sorting by priority.
163 */
164 void
165 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
166 {
167
168 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
169 lwp_t *l2;
170 const int pri = lwp_eprio(l);
171
172 TAILQ_FOREACH(l2, sq, l_sleepchain) {
173 if (lwp_eprio(l2) < pri) {
174 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
175 return;
176 }
177 }
178 }
179
180 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
181 TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
182 else
183 TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
184 }
185
186 /*
187 * sleepq_enqueue:
188 *
189 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
190 * queue must already be locked, and any interlock (such as the kernel
191 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
192 */
193 void
194 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
195 {
196 lwp_t *l = curlwp;
197
198 KASSERT(lwp_locked(l, NULL));
199 KASSERT(l->l_stat == LSONPROC);
200 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
201
202 l->l_syncobj = sobj;
203 l->l_wchan = wchan;
204 l->l_sleepq = sq;
205 l->l_wmesg = wmesg;
206 l->l_slptime = 0;
207 l->l_stat = LSSLEEP;
208 l->l_sleeperr = 0;
209
210 sleepq_insert(sq, l, sobj);
211
212 /* Save the time when thread has slept */
213 l->l_slpticks = hardclock_ticks;
214 sched_slept(l);
215 }
216
217 /*
218 * sleepq_block:
219 *
220 * After any intermediate step such as releasing an interlock, switch.
221 * sleepq_block() may return early under exceptional conditions, for
222 * example if the LWP's containing process is exiting.
223 */
224 int
225 sleepq_block(int timo, bool catch)
226 {
227 int error = 0, sig;
228 struct proc *p;
229 lwp_t *l = curlwp;
230 bool early = false;
231 int biglocks = l->l_biglocks;
232
233 ktrcsw(1, 0);
234
235 /*
236 * If sleeping interruptably, check for pending signals, exits or
237 * core dump events.
238 */
239 if (catch) {
240 l->l_flag |= LW_SINTR;
241 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
242 l->l_flag &= ~LW_CANCELLED;
243 error = EINTR;
244 early = true;
245 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
246 early = true;
247 }
248
249 if (early) {
250 /* lwp_unsleep() will release the lock */
251 lwp_unsleep(l, true);
252 } else {
253 if (timo)
254 callout_schedule(&l->l_timeout_ch, timo);
255
256 #ifdef KERN_SA
257 if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
258 sa_switch(l);
259 else
260 #endif
261 mi_switch(l);
262
263 /* The LWP and sleep queue are now unlocked. */
264 if (timo) {
265 /*
266 * Even if the callout appears to have fired, we need to
267 * stop it in order to synchronise with other CPUs.
268 */
269 if (callout_halt(&l->l_timeout_ch, NULL))
270 error = EWOULDBLOCK;
271 }
272 }
273
274 if (catch && error == 0) {
275 p = l->l_proc;
276 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
277 error = EINTR;
278 else if ((l->l_flag & LW_PENDSIG) != 0) {
279 /*
280 * Acquiring p_lock may cause us to recurse
281 * through the sleep path and back into this
282 * routine, but is safe because LWPs sleeping
283 * on locks are non-interruptable. We will
284 * not recurse again.
285 */
286 mutex_enter(p->p_lock);
287 if (((sig = sigispending(l, 0)) != 0 &&
288 (sigprop[sig] & SA_STOP) == 0) ||
289 (sig = issignal(l)) != 0)
290 error = sleepq_sigtoerror(l, sig);
291 mutex_exit(p->p_lock);
292 }
293 }
294
295 ktrcsw(0, 0);
296 if (__predict_false(biglocks != 0)) {
297 KERNEL_LOCK(biglocks, NULL);
298 }
299 return error;
300 }
301
302 /*
303 * sleepq_wake:
304 *
305 * Wake zero or more LWPs blocked on a single wait channel.
306 */
307 lwp_t *
308 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
309 {
310 lwp_t *l, *next;
311
312 KASSERT(mutex_owned(mp));
313
314 for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
315 KASSERT(l->l_sleepq == sq);
316 KASSERT(l->l_mutex == mp);
317 next = TAILQ_NEXT(l, l_sleepchain);
318 if (l->l_wchan != wchan)
319 continue;
320 sleepq_remove(sq, l);
321 if (--expected == 0)
322 break;
323 }
324
325 mutex_spin_exit(mp);
326 return l;
327 }
328
329 /*
330 * sleepq_unsleep:
331 *
332 * Remove an LWP from its sleep queue and set it runnable again.
333 * sleepq_unsleep() is called with the LWP's mutex held, and will
334 * always release it.
335 */
336 void
337 sleepq_unsleep(lwp_t *l, bool cleanup)
338 {
339 sleepq_t *sq = l->l_sleepq;
340 kmutex_t *mp = l->l_mutex;
341
342 KASSERT(lwp_locked(l, mp));
343 KASSERT(l->l_wchan != NULL);
344
345 sleepq_remove(sq, l);
346 if (cleanup) {
347 mutex_spin_exit(mp);
348 }
349 }
350
351 /*
352 * sleepq_timeout:
353 *
354 * Entered via the callout(9) subsystem to time out an LWP that is on a
355 * sleep queue.
356 */
357 void
358 sleepq_timeout(void *arg)
359 {
360 lwp_t *l = arg;
361
362 /*
363 * Lock the LWP. Assuming it's still on the sleep queue, its
364 * current mutex will also be the sleep queue mutex.
365 */
366 lwp_lock(l);
367
368 if (l->l_wchan == NULL) {
369 /* Somebody beat us to it. */
370 lwp_unlock(l);
371 return;
372 }
373
374 lwp_unsleep(l, true);
375 }
376
377 /*
378 * sleepq_sigtoerror:
379 *
380 * Given a signal number, interpret and return an error code.
381 */
382 static int
383 sleepq_sigtoerror(lwp_t *l, int sig)
384 {
385 struct proc *p = l->l_proc;
386 int error;
387
388 KASSERT(mutex_owned(p->p_lock));
389
390 /*
391 * If this sleep was canceled, don't let the syscall restart.
392 */
393 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
394 error = EINTR;
395 else
396 error = ERESTART;
397
398 return error;
399 }
400
401 /*
402 * sleepq_abort:
403 *
404 * After a panic or during autoconfiguration, lower the interrupt
405 * priority level to give pending interrupts a chance to run, and
406 * then return. Called if sleepq_dontsleep() returns non-zero, and
407 * always returns zero.
408 */
409 int
410 sleepq_abort(kmutex_t *mtx, int unlock)
411 {
412 extern int safepri;
413 int s;
414
415 s = splhigh();
416 splx(safepri);
417 splx(s);
418 if (mtx != NULL && unlock != 0)
419 mutex_exit(mtx);
420
421 return 0;
422 }
423
424 /*
425 * sleepq_changepri:
426 *
427 * Adjust the priority of an LWP residing on a sleepq. This method
428 * will only alter the user priority; the effective priority is
429 * assumed to have been fixed at the time of insertion into the queue.
430 */
431 void
432 sleepq_changepri(lwp_t *l, pri_t pri)
433 {
434 sleepq_t *sq = l->l_sleepq;
435 pri_t opri;
436
437 KASSERT(lwp_locked(l, NULL));
438
439 opri = lwp_eprio(l);
440 l->l_priority = pri;
441
442 if (lwp_eprio(l) == opri) {
443 return;
444 }
445 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
446 return;
447 }
448
449 /*
450 * Don't let the sleep queue become empty, even briefly.
451 * cv_signal() and cv_broadcast() inspect it without the
452 * sleep queue lock held and need to see a non-empty queue
453 * head if there are waiters.
454 */
455 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
456 return;
457 }
458 TAILQ_REMOVE(sq, l, l_sleepchain);
459 sleepq_insert(sq, l, l->l_syncobj);
460 }
461
462 void
463 sleepq_lendpri(lwp_t *l, pri_t pri)
464 {
465 sleepq_t *sq = l->l_sleepq;
466 pri_t opri;
467
468 KASSERT(lwp_locked(l, NULL));
469
470 opri = lwp_eprio(l);
471 l->l_inheritedprio = pri;
472
473 if (lwp_eprio(l) == opri) {
474 return;
475 }
476 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
477 return;
478 }
479
480 /*
481 * Don't let the sleep queue become empty, even briefly.
482 * cv_signal() and cv_broadcast() inspect it without the
483 * sleep queue lock held and need to see a non-empty queue
484 * head if there are waiters.
485 */
486 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
487 return;
488 }
489 TAILQ_REMOVE(sq, l, l_sleepchain);
490 sleepq_insert(sq, l, l->l_syncobj);
491 }
492