Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.44.2.2
      1 /*	$NetBSD: kern_sleepq.c,v 1.44.2.2 2012/10/30 17:22:31 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.44.2.2 2012/10/30 17:22:31 yamt Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/intr.h>
     44 #include <sys/pool.h>
     45 #include <sys/proc.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/sched.h>
     48 #include <sys/systm.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/ktrace.h>
     51 
     52 /*
     53  * for sleepq_abort:
     54  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  * priority briefly to allow interrupts, then return.  The priority to be
     56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  * maintained in the machine-dependent layers.  This priority will typically
     58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  * it can be made higher to block network software interrupts after panics.
     60  */
     61 #ifndef	IPL_SAFEPRI
     62 #define	IPL_SAFEPRI	0
     63 #endif
     64 
     65 static int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by mtsleep() and condition variables. */
     68 sleeptab_t	sleeptab	__cacheline_aligned;
     69 
     70 /*
     71  * sleeptab_init:
     72  *
     73  *	Initialize a sleep table.
     74  */
     75 void
     76 sleeptab_init(sleeptab_t *st)
     77 {
     78 	sleepq_t *sq;
     79 	int i;
     80 
     81 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82 		sq = &st->st_queues[i].st_queue;
     83 		st->st_queues[i].st_mutex =
     84 		    mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
     85 		sleepq_init(sq);
     86 	}
     87 }
     88 
     89 /*
     90  * sleepq_init:
     91  *
     92  *	Prepare a sleep queue for use.
     93  */
     94 void
     95 sleepq_init(sleepq_t *sq)
     96 {
     97 
     98 	TAILQ_INIT(sq);
     99 }
    100 
    101 /*
    102  * sleepq_remove:
    103  *
    104  *	Remove an LWP from a sleep queue and wake it up.
    105  */
    106 void
    107 sleepq_remove(sleepq_t *sq, lwp_t *l)
    108 {
    109 	struct schedstate_percpu *spc;
    110 	struct cpu_info *ci;
    111 
    112 	KASSERT(lwp_locked(l, NULL));
    113 
    114 	TAILQ_REMOVE(sq, l, l_sleepchain);
    115 	l->l_syncobj = &sched_syncobj;
    116 	l->l_wchan = NULL;
    117 	l->l_sleepq = NULL;
    118 	l->l_flag &= ~LW_SINTR;
    119 
    120 	ci = l->l_cpu;
    121 	spc = &ci->ci_schedstate;
    122 
    123 	/*
    124 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    125 	 * holds it stopped set it running again.
    126 	 */
    127 	if (l->l_stat != LSSLEEP) {
    128 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    129 		lwp_setlock(l, spc->spc_lwplock);
    130 		return;
    131 	}
    132 
    133 	/*
    134 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    135 	 * about to call mi_switch(), in which case it will yield.
    136 	 */
    137 	if ((l->l_pflag & LP_RUNNING) != 0) {
    138 		l->l_stat = LSONPROC;
    139 		l->l_slptime = 0;
    140 		lwp_setlock(l, spc->spc_lwplock);
    141 		return;
    142 	}
    143 
    144 	/* Update sleep time delta, call the wake-up handler of scheduler */
    145 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    146 	sched_wakeup(l);
    147 
    148 	/* Look for a CPU to wake up */
    149 	l->l_cpu = sched_takecpu(l);
    150 	ci = l->l_cpu;
    151 	spc = &ci->ci_schedstate;
    152 
    153 	/*
    154 	 * Set it running.
    155 	 */
    156 	spc_lock(ci);
    157 	lwp_setlock(l, spc->spc_mutex);
    158 	sched_setrunnable(l);
    159 	l->l_stat = LSRUN;
    160 	l->l_slptime = 0;
    161 	sched_enqueue(l, false);
    162 	spc_unlock(ci);
    163 }
    164 
    165 /*
    166  * sleepq_insert:
    167  *
    168  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    169  */
    170 static void
    171 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    172 {
    173 
    174 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    175 		lwp_t *l2;
    176 		const int pri = lwp_eprio(l);
    177 
    178 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    179 			if (lwp_eprio(l2) < pri) {
    180 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    181 				return;
    182 			}
    183 		}
    184 	}
    185 
    186 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    187 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    188 	else
    189 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    190 }
    191 
    192 /*
    193  * sleepq_enqueue:
    194  *
    195  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    196  *	queue must already be locked, and any interlock (such as the kernel
    197  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    198  */
    199 void
    200 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    201 {
    202 	lwp_t *l = curlwp;
    203 
    204 	KASSERT(lwp_locked(l, NULL));
    205 	KASSERT(l->l_stat == LSONPROC);
    206 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    207 
    208 	l->l_syncobj = sobj;
    209 	l->l_wchan = wchan;
    210 	l->l_sleepq = sq;
    211 	l->l_wmesg = wmesg;
    212 	l->l_slptime = 0;
    213 	l->l_stat = LSSLEEP;
    214 	l->l_sleeperr = 0;
    215 
    216 	sleepq_insert(sq, l, sobj);
    217 
    218 	/* Save the time when thread has slept */
    219 	l->l_slpticks = hardclock_ticks;
    220 	sched_slept(l);
    221 }
    222 
    223 /*
    224  * sleepq_block:
    225  *
    226  *	After any intermediate step such as releasing an interlock, switch.
    227  * 	sleepq_block() may return early under exceptional conditions, for
    228  * 	example if the LWP's containing process is exiting.
    229  */
    230 int
    231 sleepq_block(int timo, bool catch)
    232 {
    233 	int error = 0, sig;
    234 	struct proc *p;
    235 	lwp_t *l = curlwp;
    236 	bool early = false;
    237 	int biglocks = l->l_biglocks;
    238 
    239 	ktrcsw(1, 0);
    240 
    241 	/*
    242 	 * If sleeping interruptably, check for pending signals, exits or
    243 	 * core dump events.
    244 	 */
    245 	if (catch) {
    246 		l->l_flag |= LW_SINTR;
    247 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    248 			l->l_flag &= ~LW_CANCELLED;
    249 			error = EINTR;
    250 			early = true;
    251 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    252 			early = true;
    253 	}
    254 
    255 	if (early) {
    256 		/* lwp_unsleep() will release the lock */
    257 		lwp_unsleep(l, true);
    258 	} else {
    259 		if (timo) {
    260 			callout_schedule(&l->l_timeout_ch, timo);
    261 		}
    262 		mi_switch(l);
    263 
    264 		/* The LWP and sleep queue are now unlocked. */
    265 		if (timo) {
    266 			/*
    267 			 * Even if the callout appears to have fired, we need to
    268 			 * stop it in order to synchronise with other CPUs.
    269 			 */
    270 			if (callout_halt(&l->l_timeout_ch, NULL))
    271 				error = EWOULDBLOCK;
    272 		}
    273 	}
    274 
    275 	if (catch && error == 0) {
    276 		p = l->l_proc;
    277 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    278 			error = EINTR;
    279 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    280 			/*
    281 			 * Acquiring p_lock may cause us to recurse
    282 			 * through the sleep path and back into this
    283 			 * routine, but is safe because LWPs sleeping
    284 			 * on locks are non-interruptable.  We will
    285 			 * not recurse again.
    286 			 */
    287 			mutex_enter(p->p_lock);
    288 			if (((sig = sigispending(l, 0)) != 0 &&
    289 			    (sigprop[sig] & SA_STOP) == 0) ||
    290 			    (sig = issignal(l)) != 0)
    291 				error = sleepq_sigtoerror(l, sig);
    292 			mutex_exit(p->p_lock);
    293 		}
    294 	}
    295 
    296 	ktrcsw(0, 0);
    297 	if (__predict_false(biglocks != 0)) {
    298 		KERNEL_LOCK(biglocks, NULL);
    299 	}
    300 	return error;
    301 }
    302 
    303 /*
    304  * sleepq_wake:
    305  *
    306  *	Wake zero or more LWPs blocked on a single wait channel.
    307  */
    308 lwp_t *
    309 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    310 {
    311 	lwp_t *l, *next;
    312 
    313 	KASSERT(mutex_owned(mp));
    314 
    315 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    316 		KASSERT(l->l_sleepq == sq);
    317 		KASSERT(l->l_mutex == mp);
    318 		next = TAILQ_NEXT(l, l_sleepchain);
    319 		if (l->l_wchan != wchan)
    320 			continue;
    321 		sleepq_remove(sq, l);
    322 		if (--expected == 0)
    323 			break;
    324 	}
    325 
    326 	mutex_spin_exit(mp);
    327 	return l;
    328 }
    329 
    330 /*
    331  * sleepq_unsleep:
    332  *
    333  *	Remove an LWP from its sleep queue and set it runnable again.
    334  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    335  *	always release it.
    336  */
    337 void
    338 sleepq_unsleep(lwp_t *l, bool cleanup)
    339 {
    340 	sleepq_t *sq = l->l_sleepq;
    341 	kmutex_t *mp = l->l_mutex;
    342 
    343 	KASSERT(lwp_locked(l, mp));
    344 	KASSERT(l->l_wchan != NULL);
    345 
    346 	sleepq_remove(sq, l);
    347 	if (cleanup) {
    348 		mutex_spin_exit(mp);
    349 	}
    350 }
    351 
    352 /*
    353  * sleepq_timeout:
    354  *
    355  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    356  *	sleep queue.
    357  */
    358 void
    359 sleepq_timeout(void *arg)
    360 {
    361 	lwp_t *l = arg;
    362 
    363 	/*
    364 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    365 	 * current mutex will also be the sleep queue mutex.
    366 	 */
    367 	lwp_lock(l);
    368 
    369 	if (l->l_wchan == NULL) {
    370 		/* Somebody beat us to it. */
    371 		lwp_unlock(l);
    372 		return;
    373 	}
    374 
    375 	lwp_unsleep(l, true);
    376 }
    377 
    378 /*
    379  * sleepq_sigtoerror:
    380  *
    381  *	Given a signal number, interpret and return an error code.
    382  */
    383 static int
    384 sleepq_sigtoerror(lwp_t *l, int sig)
    385 {
    386 	struct proc *p = l->l_proc;
    387 	int error;
    388 
    389 	KASSERT(mutex_owned(p->p_lock));
    390 
    391 	/*
    392 	 * If this sleep was canceled, don't let the syscall restart.
    393 	 */
    394 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    395 		error = EINTR;
    396 	else
    397 		error = ERESTART;
    398 
    399 	return error;
    400 }
    401 
    402 /*
    403  * sleepq_abort:
    404  *
    405  *	After a panic or during autoconfiguration, lower the interrupt
    406  *	priority level to give pending interrupts a chance to run, and
    407  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    408  *	always returns zero.
    409  */
    410 int
    411 sleepq_abort(kmutex_t *mtx, int unlock)
    412 {
    413 	int s;
    414 
    415 	s = splhigh();
    416 	splx(IPL_SAFEPRI);
    417 	splx(s);
    418 	if (mtx != NULL && unlock != 0)
    419 		mutex_exit(mtx);
    420 
    421 	return 0;
    422 }
    423 
    424 /*
    425  * sleepq_reinsert:
    426  *
    427  *	Move the possition of the lwp in the sleep queue after a possible
    428  *	change of the lwp's effective priority.
    429  */
    430 static void
    431 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    432 {
    433 
    434 	KASSERT(l->l_sleepq == sq);
    435 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    436 		return;
    437 	}
    438 
    439 	/*
    440 	 * Don't let the sleep queue become empty, even briefly.
    441 	 * cv_signal() and cv_broadcast() inspect it without the
    442 	 * sleep queue lock held and need to see a non-empty queue
    443 	 * head if there are waiters.
    444 	 */
    445 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    446 		return;
    447 	}
    448 	TAILQ_REMOVE(sq, l, l_sleepchain);
    449 	sleepq_insert(sq, l, l->l_syncobj);
    450 }
    451 
    452 /*
    453  * sleepq_changepri:
    454  *
    455  *	Adjust the priority of an LWP residing on a sleepq.
    456  */
    457 void
    458 sleepq_changepri(lwp_t *l, pri_t pri)
    459 {
    460 	sleepq_t *sq = l->l_sleepq;
    461 
    462 	KASSERT(lwp_locked(l, NULL));
    463 
    464 	l->l_priority = pri;
    465 	sleepq_reinsert(sq, l);
    466 }
    467 
    468 /*
    469  * sleepq_changepri:
    470  *
    471  *	Adjust the lended priority of an LWP residing on a sleepq.
    472  */
    473 void
    474 sleepq_lendpri(lwp_t *l, pri_t pri)
    475 {
    476 	sleepq_t *sq = l->l_sleepq;
    477 
    478 	KASSERT(lwp_locked(l, NULL));
    479 
    480 	l->l_inheritedprio = pri;
    481 	sleepq_reinsert(sq, l);
    482 }
    483