kern_sleepq.c revision 1.46 1 /* $NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.46 2012/02/19 21:06:54 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/pool.h>
44 #include <sys/proc.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/systm.h>
48 #include <sys/sleepq.h>
49 #include <sys/ktrace.h>
50
51 static int sleepq_sigtoerror(lwp_t *, int);
52
53 /* General purpose sleep table, used by mtsleep() and condition variables. */
54 sleeptab_t sleeptab __cacheline_aligned;
55
56 /*
57 * sleeptab_init:
58 *
59 * Initialize a sleep table.
60 */
61 void
62 sleeptab_init(sleeptab_t *st)
63 {
64 sleepq_t *sq;
65 int i;
66
67 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
68 sq = &st->st_queues[i].st_queue;
69 st->st_queues[i].st_mutex =
70 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
71 sleepq_init(sq);
72 }
73 }
74
75 /*
76 * sleepq_init:
77 *
78 * Prepare a sleep queue for use.
79 */
80 void
81 sleepq_init(sleepq_t *sq)
82 {
83
84 TAILQ_INIT(sq);
85 }
86
87 /*
88 * sleepq_remove:
89 *
90 * Remove an LWP from a sleep queue and wake it up.
91 */
92 void
93 sleepq_remove(sleepq_t *sq, lwp_t *l)
94 {
95 struct schedstate_percpu *spc;
96 struct cpu_info *ci;
97
98 KASSERT(lwp_locked(l, NULL));
99
100 TAILQ_REMOVE(sq, l, l_sleepchain);
101 l->l_syncobj = &sched_syncobj;
102 l->l_wchan = NULL;
103 l->l_sleepq = NULL;
104 l->l_flag &= ~LW_SINTR;
105
106 ci = l->l_cpu;
107 spc = &ci->ci_schedstate;
108
109 /*
110 * If not sleeping, the LWP must have been suspended. Let whoever
111 * holds it stopped set it running again.
112 */
113 if (l->l_stat != LSSLEEP) {
114 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
115 lwp_setlock(l, spc->spc_lwplock);
116 return;
117 }
118
119 /*
120 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
121 * about to call mi_switch(), in which case it will yield.
122 */
123 if ((l->l_pflag & LP_RUNNING) != 0) {
124 l->l_stat = LSONPROC;
125 l->l_slptime = 0;
126 lwp_setlock(l, spc->spc_lwplock);
127 return;
128 }
129
130 /* Update sleep time delta, call the wake-up handler of scheduler */
131 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
132 sched_wakeup(l);
133
134 /* Look for a CPU to wake up */
135 l->l_cpu = sched_takecpu(l);
136 ci = l->l_cpu;
137 spc = &ci->ci_schedstate;
138
139 /*
140 * Set it running.
141 */
142 spc_lock(ci);
143 lwp_setlock(l, spc->spc_mutex);
144 sched_setrunnable(l);
145 l->l_stat = LSRUN;
146 l->l_slptime = 0;
147 sched_enqueue(l, false);
148 spc_unlock(ci);
149 }
150
151 /*
152 * sleepq_insert:
153 *
154 * Insert an LWP into the sleep queue, optionally sorting by priority.
155 */
156 static void
157 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
158 {
159
160 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
161 lwp_t *l2;
162 const int pri = lwp_eprio(l);
163
164 TAILQ_FOREACH(l2, sq, l_sleepchain) {
165 if (lwp_eprio(l2) < pri) {
166 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
167 return;
168 }
169 }
170 }
171
172 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
173 TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
174 else
175 TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
176 }
177
178 /*
179 * sleepq_enqueue:
180 *
181 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
182 * queue must already be locked, and any interlock (such as the kernel
183 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
184 */
185 void
186 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
187 {
188 lwp_t *l = curlwp;
189
190 KASSERT(lwp_locked(l, NULL));
191 KASSERT(l->l_stat == LSONPROC);
192 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
193
194 l->l_syncobj = sobj;
195 l->l_wchan = wchan;
196 l->l_sleepq = sq;
197 l->l_wmesg = wmesg;
198 l->l_slptime = 0;
199 l->l_stat = LSSLEEP;
200 l->l_sleeperr = 0;
201
202 sleepq_insert(sq, l, sobj);
203
204 /* Save the time when thread has slept */
205 l->l_slpticks = hardclock_ticks;
206 sched_slept(l);
207 }
208
209 /*
210 * sleepq_block:
211 *
212 * After any intermediate step such as releasing an interlock, switch.
213 * sleepq_block() may return early under exceptional conditions, for
214 * example if the LWP's containing process is exiting.
215 */
216 int
217 sleepq_block(int timo, bool catch)
218 {
219 int error = 0, sig;
220 struct proc *p;
221 lwp_t *l = curlwp;
222 bool early = false;
223 int biglocks = l->l_biglocks;
224
225 ktrcsw(1, 0);
226
227 /*
228 * If sleeping interruptably, check for pending signals, exits or
229 * core dump events.
230 */
231 if (catch) {
232 l->l_flag |= LW_SINTR;
233 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
234 l->l_flag &= ~LW_CANCELLED;
235 error = EINTR;
236 early = true;
237 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
238 early = true;
239 }
240
241 if (early) {
242 /* lwp_unsleep() will release the lock */
243 lwp_unsleep(l, true);
244 } else {
245 if (timo) {
246 callout_schedule(&l->l_timeout_ch, timo);
247 }
248 mi_switch(l);
249
250 /* The LWP and sleep queue are now unlocked. */
251 if (timo) {
252 /*
253 * Even if the callout appears to have fired, we need to
254 * stop it in order to synchronise with other CPUs.
255 */
256 if (callout_halt(&l->l_timeout_ch, NULL))
257 error = EWOULDBLOCK;
258 }
259 }
260
261 if (catch && error == 0) {
262 p = l->l_proc;
263 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
264 error = EINTR;
265 else if ((l->l_flag & LW_PENDSIG) != 0) {
266 /*
267 * Acquiring p_lock may cause us to recurse
268 * through the sleep path and back into this
269 * routine, but is safe because LWPs sleeping
270 * on locks are non-interruptable. We will
271 * not recurse again.
272 */
273 mutex_enter(p->p_lock);
274 if (((sig = sigispending(l, 0)) != 0 &&
275 (sigprop[sig] & SA_STOP) == 0) ||
276 (sig = issignal(l)) != 0)
277 error = sleepq_sigtoerror(l, sig);
278 mutex_exit(p->p_lock);
279 }
280 }
281
282 ktrcsw(0, 0);
283 if (__predict_false(biglocks != 0)) {
284 KERNEL_LOCK(biglocks, NULL);
285 }
286 return error;
287 }
288
289 /*
290 * sleepq_wake:
291 *
292 * Wake zero or more LWPs blocked on a single wait channel.
293 */
294 lwp_t *
295 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
296 {
297 lwp_t *l, *next;
298
299 KASSERT(mutex_owned(mp));
300
301 for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
302 KASSERT(l->l_sleepq == sq);
303 KASSERT(l->l_mutex == mp);
304 next = TAILQ_NEXT(l, l_sleepchain);
305 if (l->l_wchan != wchan)
306 continue;
307 sleepq_remove(sq, l);
308 if (--expected == 0)
309 break;
310 }
311
312 mutex_spin_exit(mp);
313 return l;
314 }
315
316 /*
317 * sleepq_unsleep:
318 *
319 * Remove an LWP from its sleep queue and set it runnable again.
320 * sleepq_unsleep() is called with the LWP's mutex held, and will
321 * always release it.
322 */
323 void
324 sleepq_unsleep(lwp_t *l, bool cleanup)
325 {
326 sleepq_t *sq = l->l_sleepq;
327 kmutex_t *mp = l->l_mutex;
328
329 KASSERT(lwp_locked(l, mp));
330 KASSERT(l->l_wchan != NULL);
331
332 sleepq_remove(sq, l);
333 if (cleanup) {
334 mutex_spin_exit(mp);
335 }
336 }
337
338 /*
339 * sleepq_timeout:
340 *
341 * Entered via the callout(9) subsystem to time out an LWP that is on a
342 * sleep queue.
343 */
344 void
345 sleepq_timeout(void *arg)
346 {
347 lwp_t *l = arg;
348
349 /*
350 * Lock the LWP. Assuming it's still on the sleep queue, its
351 * current mutex will also be the sleep queue mutex.
352 */
353 lwp_lock(l);
354
355 if (l->l_wchan == NULL) {
356 /* Somebody beat us to it. */
357 lwp_unlock(l);
358 return;
359 }
360
361 lwp_unsleep(l, true);
362 }
363
364 /*
365 * sleepq_sigtoerror:
366 *
367 * Given a signal number, interpret and return an error code.
368 */
369 static int
370 sleepq_sigtoerror(lwp_t *l, int sig)
371 {
372 struct proc *p = l->l_proc;
373 int error;
374
375 KASSERT(mutex_owned(p->p_lock));
376
377 /*
378 * If this sleep was canceled, don't let the syscall restart.
379 */
380 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
381 error = EINTR;
382 else
383 error = ERESTART;
384
385 return error;
386 }
387
388 /*
389 * sleepq_abort:
390 *
391 * After a panic or during autoconfiguration, lower the interrupt
392 * priority level to give pending interrupts a chance to run, and
393 * then return. Called if sleepq_dontsleep() returns non-zero, and
394 * always returns zero.
395 */
396 int
397 sleepq_abort(kmutex_t *mtx, int unlock)
398 {
399 extern int safepri;
400 int s;
401
402 s = splhigh();
403 splx(safepri);
404 splx(s);
405 if (mtx != NULL && unlock != 0)
406 mutex_exit(mtx);
407
408 return 0;
409 }
410
411 /*
412 * sleepq_reinsert:
413 *
414 * Move the possition of the lwp in the sleep queue after a possible
415 * change of the lwp's effective priority.
416 */
417 static void
418 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
419 {
420
421 KASSERT(l->l_sleepq == sq);
422 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
423 return;
424 }
425
426 /*
427 * Don't let the sleep queue become empty, even briefly.
428 * cv_signal() and cv_broadcast() inspect it without the
429 * sleep queue lock held and need to see a non-empty queue
430 * head if there are waiters.
431 */
432 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
433 return;
434 }
435 TAILQ_REMOVE(sq, l, l_sleepchain);
436 sleepq_insert(sq, l, l->l_syncobj);
437 }
438
439 /*
440 * sleepq_changepri:
441 *
442 * Adjust the priority of an LWP residing on a sleepq.
443 */
444 void
445 sleepq_changepri(lwp_t *l, pri_t pri)
446 {
447 sleepq_t *sq = l->l_sleepq;
448
449 KASSERT(lwp_locked(l, NULL));
450
451 l->l_priority = pri;
452 sleepq_reinsert(sq, l);
453 }
454
455 /*
456 * sleepq_changepri:
457 *
458 * Adjust the lended priority of an LWP residing on a sleepq.
459 */
460 void
461 sleepq_lendpri(lwp_t *l, pri_t pri)
462 {
463 sleepq_t *sq = l->l_sleepq;
464
465 KASSERT(lwp_locked(l, NULL));
466
467 l->l_inheritedprio = pri;
468 sleepq_reinsert(sq, l);
469 }
470