kern_sleepq.c revision 1.5.2.3 1 /* $NetBSD: kern_sleepq.c,v 1.5.2.3 2007/09/03 14:40:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.5.2.3 2007/09/03 14:40:55 yamt Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110
111 KASSERT(lwp_locked(l, sq->sq_mutex));
112 KASSERT(sq->sq_waiters > 0);
113
114 sq->sq_waiters--;
115 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
116
117 #ifdef DIAGNOSTIC
118 if (sq->sq_waiters == 0)
119 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
120 else
121 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
122 #endif
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, &spc->spc_lwplock);
139 return 0;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_flag & LW_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, &spc->spc_lwplock);
150 return 0;
151 }
152
153 /*
154 * Set it running. We'll try to get the last CPU that ran
155 * this LWP to pick it up again.
156 */
157 spc_lock(ci);
158 lwp_setlock(l, spc->spc_mutex);
159 sched_setrunnable(l);
160 l->l_stat = LSRUN;
161 l->l_slptime = 0;
162 if ((l->l_flag & LW_INMEM) != 0) {
163 sched_enqueue(l, false);
164 if (lwp_eprio(l) < spc->spc_curpriority)
165 cpu_need_resched(ci, 0);
166 spc_unlock(ci);
167 return 0;
168 }
169 spc_unlock(ci);
170 return 1;
171 }
172
173 /*
174 * sleepq_insert:
175 *
176 * Insert an LWP into the sleep queue, optionally sorting by priority.
177 */
178 inline void
179 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
180 {
181 lwp_t *l2;
182 const int pri = lwp_eprio(l);
183
184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
185 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
186 if (lwp_eprio(l2) > pri) {
187 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
188 return;
189 }
190 }
191 }
192
193 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
194 }
195
196 /*
197 * sleepq_enqueue:
198 *
199 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
200 * queue must already be locked, and any interlock (such as the kernel
201 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
202 */
203 void
204 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
205 syncobj_t *sobj)
206 {
207 lwp_t *l = curlwp;
208
209 KASSERT(mutex_owned(sq->sq_mutex));
210 KASSERT(l->l_stat == LSONPROC);
211 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
212
213 l->l_syncobj = sobj;
214 l->l_wchan = wchan;
215 l->l_sleepq = sq;
216 l->l_wmesg = wmesg;
217 l->l_slptime = 0;
218 l->l_priority = pri;
219 l->l_stat = LSSLEEP;
220 l->l_sleeperr = 0;
221
222 sq->sq_waiters++;
223 sleepq_insert(sq, l, sobj);
224 }
225
226 /*
227 * sleepq_block:
228 *
229 * After any intermediate step such as releasing an interlock, switch.
230 * sleepq_block() may return early under exceptional conditions, for
231 * example if the LWP's containing process is exiting.
232 */
233 int
234 sleepq_block(int timo, bool catch)
235 {
236 int error = 0, sig;
237 struct proc *p;
238 lwp_t *l = curlwp;
239 bool early = false;
240
241 ktrcsw(1, 0);
242
243 /*
244 * If sleeping interruptably, check for pending signals, exits or
245 * core dump events.
246 */
247 if (catch) {
248 l->l_flag |= LW_SINTR;
249 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
250 early = true;
251 }
252 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
253 l->l_flag &= ~LW_CANCELLED;
254 early = true;
255 }
256 }
257
258 if (early) {
259 /* lwp_unsleep() will release the lock */
260 lwp_unsleep(l);
261 } else {
262 if (timo)
263 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
264 mi_switch(l);
265
266 /* The LWP and sleep queue are now unlocked. */
267 if (timo) {
268 /*
269 * Even if the callout appears to have fired, we need to
270 * stop it in order to synchronise with other CPUs.
271 */
272 if (callout_stop(&l->l_tsleep_ch))
273 error = EWOULDBLOCK;
274 }
275 }
276
277 if (catch && error == 0) {
278 p = l->l_proc;
279 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
280 error = EINTR;
281 else if ((l->l_flag & LW_PENDSIG) != 0) {
282 KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
283 mutex_enter(&p->p_smutex);
284 if ((sig = issignal(l)) != 0)
285 error = sleepq_sigtoerror(l, sig);
286 mutex_exit(&p->p_smutex);
287 KERNEL_UNLOCK_LAST(l);
288 }
289 }
290
291 ktrcsw(0, 0);
292
293 KERNEL_LOCK(l->l_biglocks, l);
294 return error;
295 }
296
297 /*
298 * sleepq_wake:
299 *
300 * Wake zero or more LWPs blocked on a single wait channel.
301 */
302 lwp_t *
303 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
304 {
305 lwp_t *l, *next;
306 int swapin = 0;
307
308 KASSERT(mutex_owned(sq->sq_mutex));
309
310 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
311 KASSERT(l->l_sleepq == sq);
312 next = TAILQ_NEXT(l, l_sleepchain);
313 if (l->l_wchan != wchan)
314 continue;
315 swapin |= sleepq_remove(sq, l);
316 if (--expected == 0)
317 break;
318 }
319
320 sleepq_unlock(sq);
321
322 /*
323 * If there are newly awakend threads that need to be swapped in,
324 * then kick the swapper into action.
325 */
326 if (swapin)
327 uvm_kick_scheduler();
328
329 return l;
330 }
331
332 /*
333 * sleepq_unsleep:
334 *
335 * Remove an LWP from its sleep queue and set it runnable again.
336 * sleepq_unsleep() is called with the LWP's mutex held, and will
337 * always release it.
338 */
339 void
340 sleepq_unsleep(lwp_t *l)
341 {
342 sleepq_t *sq = l->l_sleepq;
343 int swapin;
344
345 KASSERT(lwp_locked(l, NULL));
346 KASSERT(l->l_wchan != NULL);
347 KASSERT(l->l_mutex == sq->sq_mutex);
348
349 swapin = sleepq_remove(sq, l);
350 sleepq_unlock(sq);
351
352 if (swapin)
353 uvm_kick_scheduler();
354 }
355
356 /*
357 * sleepq_timeout:
358 *
359 * Entered via the callout(9) subsystem to time out an LWP that is on a
360 * sleep queue.
361 */
362 void
363 sleepq_timeout(void *arg)
364 {
365 lwp_t *l = arg;
366
367 /*
368 * Lock the LWP. Assuming it's still on the sleep queue, its
369 * current mutex will also be the sleep queue mutex.
370 */
371 lwp_lock(l);
372
373 if (l->l_wchan == NULL) {
374 /* Somebody beat us to it. */
375 lwp_unlock(l);
376 return;
377 }
378
379 lwp_unsleep(l);
380 }
381
382 /*
383 * sleepq_sigtoerror:
384 *
385 * Given a signal number, interpret and return an error code.
386 */
387 int
388 sleepq_sigtoerror(lwp_t *l, int sig)
389 {
390 struct proc *p = l->l_proc;
391 int error;
392
393 KASSERT(mutex_owned(&p->p_smutex));
394
395 /*
396 * If this sleep was canceled, don't let the syscall restart.
397 */
398 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
399 error = EINTR;
400 else
401 error = ERESTART;
402
403 return error;
404 }
405
406 /*
407 * sleepq_abort:
408 *
409 * After a panic or during autoconfiguration, lower the interrupt
410 * priority level to give pending interrupts a chance to run, and
411 * then return. Called if sleepq_dontsleep() returns non-zero, and
412 * always returns zero.
413 */
414 int
415 sleepq_abort(kmutex_t *mtx, int unlock)
416 {
417 extern int safepri;
418 int s;
419
420 s = splhigh();
421 splx(safepri);
422 splx(s);
423 if (mtx != NULL && unlock != 0)
424 mutex_exit(mtx);
425
426 return 0;
427 }
428
429 /*
430 * sleepq_changepri:
431 *
432 * Adjust the priority of an LWP residing on a sleepq. This method
433 * will only alter the user priority; the effective priority is
434 * assumed to have been fixed at the time of insertion into the queue.
435 */
436 void
437 sleepq_changepri(lwp_t *l, pri_t pri)
438 {
439
440 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
441 l->l_usrpri = pri;
442 }
443
444 void
445 sleepq_lendpri(lwp_t *l, pri_t pri)
446 {
447 sleepq_t *sq = l->l_sleepq;
448 pri_t opri;
449
450 KASSERT(lwp_locked(l, sq->sq_mutex));
451
452 opri = lwp_eprio(l);
453 l->l_inheritedprio = pri;
454
455 if (lwp_eprio(l) != opri &&
456 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
457 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
458 sleepq_insert(sq, l, l->l_syncobj);
459 }
460 }
461