Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.55
      1 /*	$NetBSD: kern_sleepq.c,v 1.55 2019/12/16 19:43:36 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.55 2019/12/16 19:43:36 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/intr.h>
     44 #include <sys/pool.h>
     45 #include <sys/proc.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/sched.h>
     48 #include <sys/systm.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/ktrace.h>
     51 
     52 /*
     53  * for sleepq_abort:
     54  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  * priority briefly to allow interrupts, then return.  The priority to be
     56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  * maintained in the machine-dependent layers.  This priority will typically
     58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  * it can be made higher to block network software interrupts after panics.
     60  */
     61 #ifndef	IPL_SAFEPRI
     62 #define	IPL_SAFEPRI	0
     63 #endif
     64 
     65 static int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by mtsleep() and condition variables. */
     68 sleeptab_t	sleeptab __cacheline_aligned;
     69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70 
     71 /*
     72  * sleeptab_init:
     73  *
     74  *	Initialize a sleep table.
     75  */
     76 void
     77 sleeptab_init(sleeptab_t *st)
     78 {
     79 	int i;
     80 
     81 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     82 		mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT, IPL_SCHED);
     83 		sleepq_init(&st->st_queue[i]);
     84 	}
     85 }
     86 
     87 /*
     88  * sleepq_init:
     89  *
     90  *	Prepare a sleep queue for use.
     91  */
     92 void
     93 sleepq_init(sleepq_t *sq)
     94 {
     95 
     96 	TAILQ_INIT(sq);
     97 }
     98 
     99 /*
    100  * sleepq_remove:
    101  *
    102  *	Remove an LWP from a sleep queue and wake it up.
    103  */
    104 void
    105 sleepq_remove(sleepq_t *sq, lwp_t *l)
    106 {
    107 	struct schedstate_percpu *spc;
    108 	struct cpu_info *ci;
    109 
    110 	KASSERT(lwp_locked(l, NULL));
    111 
    112 	TAILQ_REMOVE(sq, l, l_sleepchain);
    113 	l->l_syncobj = &sched_syncobj;
    114 	l->l_wchan = NULL;
    115 	l->l_sleepq = NULL;
    116 	l->l_flag &= ~LW_SINTR;
    117 
    118 	ci = l->l_cpu;
    119 	spc = &ci->ci_schedstate;
    120 
    121 	/*
    122 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    123 	 * holds it stopped set it running again.
    124 	 */
    125 	if (l->l_stat != LSSLEEP) {
    126 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    127 		lwp_setlock(l, spc->spc_lwplock);
    128 		return;
    129 	}
    130 
    131 	/*
    132 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    133 	 * about to call mi_switch(), in which case it will yield.
    134 	 */
    135 	if ((l->l_pflag & LP_RUNNING) != 0) {
    136 		l->l_stat = LSONPROC;
    137 		l->l_slptime = 0;
    138 		lwp_setlock(l, spc->spc_lwplock);
    139 		return;
    140 	}
    141 
    142 	/* Update sleep time delta, call the wake-up handler of scheduler */
    143 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    144 	sched_wakeup(l);
    145 
    146 	/* Look for a CPU to wake up */
    147 	l->l_cpu = sched_takecpu(l);
    148 	ci = l->l_cpu;
    149 	spc = &ci->ci_schedstate;
    150 
    151 	/*
    152 	 * Set it running.
    153 	 */
    154 	spc_lock(ci);
    155 	lwp_setlock(l, spc->spc_mutex);
    156 	sched_setrunnable(l);
    157 	l->l_stat = LSRUN;
    158 	l->l_slptime = 0;
    159 	sched_enqueue(l);
    160 	sched_resched_lwp(l, true);
    161 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    162 }
    163 
    164 /*
    165  * sleepq_insert:
    166  *
    167  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    168  */
    169 static void
    170 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    171 {
    172 
    173 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    174 		lwp_t *l2;
    175 		const int pri = lwp_eprio(l);
    176 
    177 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    178 			if (lwp_eprio(l2) < pri) {
    179 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    180 				return;
    181 			}
    182 		}
    183 	}
    184 
    185 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    186 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    187 	else
    188 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    189 }
    190 
    191 /*
    192  * sleepq_enqueue:
    193  *
    194  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    195  *	queue must already be locked, and any interlock (such as the kernel
    196  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    197  */
    198 void
    199 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    200 {
    201 	lwp_t *l = curlwp;
    202 
    203 	KASSERT(lwp_locked(l, NULL));
    204 	KASSERT(l->l_stat == LSONPROC);
    205 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    206 
    207 	l->l_syncobj = sobj;
    208 	l->l_wchan = wchan;
    209 	l->l_sleepq = sq;
    210 	l->l_wmesg = wmesg;
    211 	l->l_slptime = 0;
    212 	l->l_stat = LSSLEEP;
    213 	l->l_sleeperr = 0;
    214 
    215 	sleepq_insert(sq, l, sobj);
    216 
    217 	/* Save the time when thread has slept */
    218 	l->l_slpticks = hardclock_ticks;
    219 	sched_slept(l);
    220 }
    221 
    222 /*
    223  * sleepq_block:
    224  *
    225  *	After any intermediate step such as releasing an interlock, switch.
    226  * 	sleepq_block() may return early under exceptional conditions, for
    227  * 	example if the LWP's containing process is exiting.
    228  *
    229  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    230  */
    231 int
    232 sleepq_block(int timo, bool catch_p)
    233 {
    234 	int error = 0, sig;
    235 	struct proc *p;
    236 	lwp_t *l = curlwp;
    237 	bool early = false;
    238 	int biglocks = l->l_biglocks;
    239 
    240 	ktrcsw(1, 0);
    241 
    242 	/*
    243 	 * If sleeping interruptably, check for pending signals, exits or
    244 	 * core dump events.
    245 	 */
    246 	if (catch_p) {
    247 		l->l_flag |= LW_SINTR;
    248 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    249 			l->l_flag &= ~LW_CANCELLED;
    250 			error = EINTR;
    251 			early = true;
    252 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    253 			early = true;
    254 	}
    255 
    256 	if (early) {
    257 		/* lwp_unsleep() will release the lock */
    258 		lwp_unsleep(l, true);
    259 	} else {
    260 		if (timo) {
    261 			callout_schedule(&l->l_timeout_ch, timo);
    262 		}
    263 		spc_lock(l->l_cpu);
    264 		mi_switch(l);
    265 
    266 		/* The LWP and sleep queue are now unlocked. */
    267 		if (timo) {
    268 			/*
    269 			 * Even if the callout appears to have fired, we
    270 			 * need to stop it in order to synchronise with
    271 			 * other CPUs.  It's important that we do this in
    272 			 * this LWP's context, and not during wakeup, in
    273 			 * order to keep the callout & its cache lines
    274 			 * co-located on the CPU with the LWP.
    275 			 */
    276 			if (callout_halt(&l->l_timeout_ch, NULL))
    277 				error = EWOULDBLOCK;
    278 		}
    279 	}
    280 
    281 	if (catch_p && error == 0) {
    282 		p = l->l_proc;
    283 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    284 			error = EINTR;
    285 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    286 			/*
    287 			 * Acquiring p_lock may cause us to recurse
    288 			 * through the sleep path and back into this
    289 			 * routine, but is safe because LWPs sleeping
    290 			 * on locks are non-interruptable.  We will
    291 			 * not recurse again.
    292 			 */
    293 			mutex_enter(p->p_lock);
    294 			if (((sig = sigispending(l, 0)) != 0 &&
    295 			    (sigprop[sig] & SA_STOP) == 0) ||
    296 			    (sig = issignal(l)) != 0)
    297 				error = sleepq_sigtoerror(l, sig);
    298 			mutex_exit(p->p_lock);
    299 		}
    300 	}
    301 
    302 	ktrcsw(0, 0);
    303 	if (__predict_false(biglocks != 0)) {
    304 		KERNEL_LOCK(biglocks, NULL);
    305 	}
    306 	return error;
    307 }
    308 
    309 /*
    310  * sleepq_wake:
    311  *
    312  *	Wake zero or more LWPs blocked on a single wait channel.
    313  */
    314 void
    315 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    316 {
    317 	lwp_t *l, *next;
    318 
    319 	KASSERT(mutex_owned(mp));
    320 
    321 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    322 		KASSERT(l->l_sleepq == sq);
    323 		KASSERT(l->l_mutex == mp);
    324 		next = TAILQ_NEXT(l, l_sleepchain);
    325 		if (l->l_wchan != wchan)
    326 			continue;
    327 		sleepq_remove(sq, l);
    328 		if (--expected == 0)
    329 			break;
    330 	}
    331 
    332 	mutex_spin_exit(mp);
    333 }
    334 
    335 /*
    336  * sleepq_unsleep:
    337  *
    338  *	Remove an LWP from its sleep queue and set it runnable again.
    339  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    340  *	release it if "unlock" is true.
    341  */
    342 void
    343 sleepq_unsleep(lwp_t *l, bool unlock)
    344 {
    345 	sleepq_t *sq = l->l_sleepq;
    346 	kmutex_t *mp = l->l_mutex;
    347 
    348 	KASSERT(lwp_locked(l, mp));
    349 	KASSERT(l->l_wchan != NULL);
    350 
    351 	sleepq_remove(sq, l);
    352 	if (unlock) {
    353 		mutex_spin_exit(mp);
    354 	}
    355 }
    356 
    357 /*
    358  * sleepq_timeout:
    359  *
    360  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    361  *	sleep queue.
    362  */
    363 void
    364 sleepq_timeout(void *arg)
    365 {
    366 	lwp_t *l = arg;
    367 
    368 	/*
    369 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    370 	 * current mutex will also be the sleep queue mutex.
    371 	 */
    372 	lwp_lock(l);
    373 
    374 	if (l->l_wchan == NULL) {
    375 		/* Somebody beat us to it. */
    376 		lwp_unlock(l);
    377 		return;
    378 	}
    379 
    380 	lwp_unsleep(l, true);
    381 }
    382 
    383 /*
    384  * sleepq_sigtoerror:
    385  *
    386  *	Given a signal number, interpret and return an error code.
    387  */
    388 static int
    389 sleepq_sigtoerror(lwp_t *l, int sig)
    390 {
    391 	struct proc *p = l->l_proc;
    392 	int error;
    393 
    394 	KASSERT(mutex_owned(p->p_lock));
    395 
    396 	/*
    397 	 * If this sleep was canceled, don't let the syscall restart.
    398 	 */
    399 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    400 		error = EINTR;
    401 	else
    402 		error = ERESTART;
    403 
    404 	return error;
    405 }
    406 
    407 /*
    408  * sleepq_abort:
    409  *
    410  *	After a panic or during autoconfiguration, lower the interrupt
    411  *	priority level to give pending interrupts a chance to run, and
    412  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    413  *	always returns zero.
    414  */
    415 int
    416 sleepq_abort(kmutex_t *mtx, int unlock)
    417 {
    418 	int s;
    419 
    420 	s = splhigh();
    421 	splx(IPL_SAFEPRI);
    422 	splx(s);
    423 	if (mtx != NULL && unlock != 0)
    424 		mutex_exit(mtx);
    425 
    426 	return 0;
    427 }
    428 
    429 /*
    430  * sleepq_reinsert:
    431  *
    432  *	Move the possition of the lwp in the sleep queue after a possible
    433  *	change of the lwp's effective priority.
    434  */
    435 static void
    436 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    437 {
    438 
    439 	KASSERT(l->l_sleepq == sq);
    440 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    441 		return;
    442 	}
    443 
    444 	/*
    445 	 * Don't let the sleep queue become empty, even briefly.
    446 	 * cv_signal() and cv_broadcast() inspect it without the
    447 	 * sleep queue lock held and need to see a non-empty queue
    448 	 * head if there are waiters.
    449 	 */
    450 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    451 		return;
    452 	}
    453 	TAILQ_REMOVE(sq, l, l_sleepchain);
    454 	sleepq_insert(sq, l, l->l_syncobj);
    455 }
    456 
    457 /*
    458  * sleepq_changepri:
    459  *
    460  *	Adjust the priority of an LWP residing on a sleepq.
    461  */
    462 void
    463 sleepq_changepri(lwp_t *l, pri_t pri)
    464 {
    465 	sleepq_t *sq = l->l_sleepq;
    466 
    467 	KASSERT(lwp_locked(l, NULL));
    468 
    469 	l->l_priority = pri;
    470 	sleepq_reinsert(sq, l);
    471 }
    472 
    473 /*
    474  * sleepq_changepri:
    475  *
    476  *	Adjust the lended priority of an LWP residing on a sleepq.
    477  */
    478 void
    479 sleepq_lendpri(lwp_t *l, pri_t pri)
    480 {
    481 	sleepq_t *sq = l->l_sleepq;
    482 
    483 	KASSERT(lwp_locked(l, NULL));
    484 
    485 	l->l_inheritedprio = pri;
    486 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    487 	sleepq_reinsert(sq, l);
    488 }
    489