kern_sleepq.c revision 1.62 1 /* $NetBSD: kern_sleepq.c,v 1.62 2020/03/24 21:05:06 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.62 2020/03/24 21:05:06 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/intr.h>
44 #include <sys/pool.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/systm.h>
49 #include <sys/sleepq.h>
50 #include <sys/ktrace.h>
51
52 /*
53 * for sleepq_abort:
54 * During autoconfiguration or after a panic, a sleep will simply lower the
55 * priority briefly to allow interrupts, then return. The priority to be
56 * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57 * maintained in the machine-dependent layers. This priority will typically
58 * be 0, or the lowest priority that is safe for use on the interrupt stack;
59 * it can be made higher to block network software interrupts after panics.
60 */
61 #ifndef IPL_SAFEPRI
62 #define IPL_SAFEPRI 0
63 #endif
64
65 static int sleepq_sigtoerror(lwp_t *, int);
66
67 /* General purpose sleep table, used by mtsleep() and condition variables. */
68 sleeptab_t sleeptab __cacheline_aligned;
69 sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70
71 /*
72 * sleeptab_init:
73 *
74 * Initialize a sleep table.
75 */
76 void
77 sleeptab_init(sleeptab_t *st)
78 {
79 static bool again;
80 int i;
81
82 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 if (!again) {
84 mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 IPL_SCHED);
86 }
87 sleepq_init(&st->st_queue[i]);
88 }
89 again = true;
90 }
91
92 /*
93 * sleepq_init:
94 *
95 * Prepare a sleep queue for use.
96 */
97 void
98 sleepq_init(sleepq_t *sq)
99 {
100
101 TAILQ_INIT(sq);
102 }
103
104 /*
105 * sleepq_remove:
106 *
107 * Remove an LWP from a sleep queue and wake it up.
108 */
109 void
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 struct schedstate_percpu *spc;
113 struct cpu_info *ci;
114
115 KASSERT(lwp_locked(l, NULL));
116
117 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 KASSERT(sq != NULL);
119 TAILQ_REMOVE(sq, l, l_sleepchain);
120 } else {
121 KASSERT(sq == NULL);
122 }
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, spc->spc_lwplock);
139 return;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_pflag & LP_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, spc->spc_lwplock);
150 return;
151 }
152
153 /* Update sleep time delta, call the wake-up handler of scheduler */
154 l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
155 sched_wakeup(l);
156
157 /* Look for a CPU to wake up */
158 l->l_cpu = sched_takecpu(l);
159 ci = l->l_cpu;
160 spc = &ci->ci_schedstate;
161
162 /*
163 * Set it running.
164 */
165 spc_lock(ci);
166 lwp_setlock(l, spc->spc_mutex);
167 sched_setrunnable(l);
168 l->l_stat = LSRUN;
169 l->l_slptime = 0;
170 sched_enqueue(l);
171 sched_resched_lwp(l, true);
172 /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 }
174
175 /*
176 * sleepq_insert:
177 *
178 * Insert an LWP into the sleep queue, optionally sorting by priority.
179 */
180 static void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183
184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 KASSERT(sq == NULL);
186 return;
187 }
188 KASSERT(sq != NULL);
189
190 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 lwp_t *l2;
192 const pri_t pri = lwp_eprio(l);
193
194 TAILQ_FOREACH(l2, sq, l_sleepchain) {
195 if (lwp_eprio(l2) < pri) {
196 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
197 return;
198 }
199 }
200 }
201
202 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
203 TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
204 else
205 TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
206 }
207
208 /*
209 * sleepq_enqueue:
210 *
211 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
212 * queue must already be locked, and any interlock (such as the kernel
213 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
214 */
215 void
216 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
217 {
218 lwp_t *l = curlwp;
219
220 KASSERT(lwp_locked(l, NULL));
221 KASSERT(l->l_stat == LSONPROC);
222 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
223
224 l->l_syncobj = sobj;
225 l->l_wchan = wchan;
226 l->l_sleepq = sq;
227 l->l_wmesg = wmesg;
228 l->l_slptime = 0;
229 l->l_stat = LSSLEEP;
230
231 sleepq_insert(sq, l, sobj);
232
233 /* Save the time when thread has slept */
234 l->l_slpticks = hardclock_ticks;
235 sched_slept(l);
236 }
237
238 /*
239 * sleepq_block:
240 *
241 * After any intermediate step such as releasing an interlock, switch.
242 * sleepq_block() may return early under exceptional conditions, for
243 * example if the LWP's containing process is exiting.
244 *
245 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
246 */
247 int
248 sleepq_block(int timo, bool catch_p)
249 {
250 int error = 0, sig;
251 struct proc *p;
252 lwp_t *l = curlwp;
253 bool early = false;
254 int biglocks = l->l_biglocks;
255
256 ktrcsw(1, 0);
257
258 /*
259 * If sleeping interruptably, check for pending signals, exits or
260 * core dump events.
261 */
262 if (catch_p) {
263 l->l_flag |= LW_SINTR;
264 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
265 l->l_flag &= ~LW_CANCELLED;
266 error = EINTR;
267 early = true;
268 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
269 early = true;
270 }
271
272 if (early) {
273 /* lwp_unsleep() will release the lock */
274 lwp_unsleep(l, true);
275 } else {
276 if (timo) {
277 callout_schedule(&l->l_timeout_ch, timo);
278 }
279 spc_lock(l->l_cpu);
280 mi_switch(l);
281
282 /* The LWP and sleep queue are now unlocked. */
283 if (timo) {
284 /*
285 * Even if the callout appears to have fired, we
286 * need to stop it in order to synchronise with
287 * other CPUs. It's important that we do this in
288 * this LWP's context, and not during wakeup, in
289 * order to keep the callout & its cache lines
290 * co-located on the CPU with the LWP.
291 */
292 if (callout_halt(&l->l_timeout_ch, NULL))
293 error = EWOULDBLOCK;
294 }
295 }
296
297 if (catch_p && error == 0) {
298 p = l->l_proc;
299 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
300 error = EINTR;
301 else if ((l->l_flag & LW_PENDSIG) != 0) {
302 /*
303 * Acquiring p_lock may cause us to recurse
304 * through the sleep path and back into this
305 * routine, but is safe because LWPs sleeping
306 * on locks are non-interruptable and we will
307 * not recurse again.
308 */
309 mutex_enter(p->p_lock);
310 if (((sig = sigispending(l, 0)) != 0 &&
311 (sigprop[sig] & SA_STOP) == 0) ||
312 (sig = issignal(l)) != 0)
313 error = sleepq_sigtoerror(l, sig);
314 mutex_exit(p->p_lock);
315 }
316 }
317
318 ktrcsw(0, 0);
319 if (__predict_false(biglocks != 0)) {
320 KERNEL_LOCK(biglocks, NULL);
321 }
322 return error;
323 }
324
325 /*
326 * sleepq_wake:
327 *
328 * Wake zero or more LWPs blocked on a single wait channel.
329 */
330 void
331 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
332 {
333 lwp_t *l, *next;
334
335 KASSERT(mutex_owned(mp));
336
337 for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
338 KASSERT(l->l_sleepq == sq);
339 KASSERT(l->l_mutex == mp);
340 next = TAILQ_NEXT(l, l_sleepchain);
341 if (l->l_wchan != wchan)
342 continue;
343 sleepq_remove(sq, l);
344 if (--expected == 0)
345 break;
346 }
347
348 mutex_spin_exit(mp);
349 }
350
351 /*
352 * sleepq_unsleep:
353 *
354 * Remove an LWP from its sleep queue and set it runnable again.
355 * sleepq_unsleep() is called with the LWP's mutex held, and will
356 * release it if "unlock" is true.
357 */
358 void
359 sleepq_unsleep(lwp_t *l, bool unlock)
360 {
361 sleepq_t *sq = l->l_sleepq;
362 kmutex_t *mp = l->l_mutex;
363
364 KASSERT(lwp_locked(l, mp));
365 KASSERT(l->l_wchan != NULL);
366
367 sleepq_remove(sq, l);
368 if (unlock) {
369 mutex_spin_exit(mp);
370 }
371 }
372
373 /*
374 * sleepq_timeout:
375 *
376 * Entered via the callout(9) subsystem to time out an LWP that is on a
377 * sleep queue.
378 */
379 void
380 sleepq_timeout(void *arg)
381 {
382 lwp_t *l = arg;
383
384 /*
385 * Lock the LWP. Assuming it's still on the sleep queue, its
386 * current mutex will also be the sleep queue mutex.
387 */
388 lwp_lock(l);
389
390 if (l->l_wchan == NULL) {
391 /* Somebody beat us to it. */
392 lwp_unlock(l);
393 return;
394 }
395
396 lwp_unsleep(l, true);
397 }
398
399 /*
400 * sleepq_sigtoerror:
401 *
402 * Given a signal number, interpret and return an error code.
403 */
404 static int
405 sleepq_sigtoerror(lwp_t *l, int sig)
406 {
407 struct proc *p = l->l_proc;
408 int error;
409
410 KASSERT(mutex_owned(p->p_lock));
411
412 /*
413 * If this sleep was canceled, don't let the syscall restart.
414 */
415 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
416 error = EINTR;
417 else
418 error = ERESTART;
419
420 return error;
421 }
422
423 /*
424 * sleepq_abort:
425 *
426 * After a panic or during autoconfiguration, lower the interrupt
427 * priority level to give pending interrupts a chance to run, and
428 * then return. Called if sleepq_dontsleep() returns non-zero, and
429 * always returns zero.
430 */
431 int
432 sleepq_abort(kmutex_t *mtx, int unlock)
433 {
434 int s;
435
436 s = splhigh();
437 splx(IPL_SAFEPRI);
438 splx(s);
439 if (mtx != NULL && unlock != 0)
440 mutex_exit(mtx);
441
442 return 0;
443 }
444
445 /*
446 * sleepq_reinsert:
447 *
448 * Move the possition of the lwp in the sleep queue after a possible
449 * change of the lwp's effective priority.
450 */
451 static void
452 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
453 {
454
455 KASSERT(l->l_sleepq == sq);
456 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
457 return;
458 }
459
460 /*
461 * Don't let the sleep queue become empty, even briefly.
462 * cv_signal() and cv_broadcast() inspect it without the
463 * sleep queue lock held and need to see a non-empty queue
464 * head if there are waiters.
465 */
466 if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
467 return;
468 }
469 TAILQ_REMOVE(sq, l, l_sleepchain);
470 sleepq_insert(sq, l, l->l_syncobj);
471 }
472
473 /*
474 * sleepq_changepri:
475 *
476 * Adjust the priority of an LWP residing on a sleepq.
477 */
478 void
479 sleepq_changepri(lwp_t *l, pri_t pri)
480 {
481 sleepq_t *sq = l->l_sleepq;
482
483 KASSERT(lwp_locked(l, NULL));
484
485 l->l_priority = pri;
486 sleepq_reinsert(sq, l);
487 }
488
489 /*
490 * sleepq_changepri:
491 *
492 * Adjust the lended priority of an LWP residing on a sleepq.
493 */
494 void
495 sleepq_lendpri(lwp_t *l, pri_t pri)
496 {
497 sleepq_t *sq = l->l_sleepq;
498
499 KASSERT(lwp_locked(l, NULL));
500
501 l->l_inheritedprio = pri;
502 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
503 sleepq_reinsert(sq, l);
504 }
505