Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.62
      1 /*	$NetBSD: kern_sleepq.c,v 1.62 2020/03/24 21:05:06 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.62 2020/03/24 21:05:06 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/intr.h>
     44 #include <sys/pool.h>
     45 #include <sys/proc.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/sched.h>
     48 #include <sys/systm.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/ktrace.h>
     51 
     52 /*
     53  * for sleepq_abort:
     54  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  * priority briefly to allow interrupts, then return.  The priority to be
     56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  * maintained in the machine-dependent layers.  This priority will typically
     58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  * it can be made higher to block network software interrupts after panics.
     60  */
     61 #ifndef	IPL_SAFEPRI
     62 #define	IPL_SAFEPRI	0
     63 #endif
     64 
     65 static int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by mtsleep() and condition variables. */
     68 sleeptab_t	sleeptab __cacheline_aligned;
     69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70 
     71 /*
     72  * sleeptab_init:
     73  *
     74  *	Initialize a sleep table.
     75  */
     76 void
     77 sleeptab_init(sleeptab_t *st)
     78 {
     79 	static bool again;
     80 	int i;
     81 
     82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83 		if (!again) {
     84 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     85 			    IPL_SCHED);
     86 		}
     87 		sleepq_init(&st->st_queue[i]);
     88 	}
     89 	again = true;
     90 }
     91 
     92 /*
     93  * sleepq_init:
     94  *
     95  *	Prepare a sleep queue for use.
     96  */
     97 void
     98 sleepq_init(sleepq_t *sq)
     99 {
    100 
    101 	TAILQ_INIT(sq);
    102 }
    103 
    104 /*
    105  * sleepq_remove:
    106  *
    107  *	Remove an LWP from a sleep queue and wake it up.
    108  */
    109 void
    110 sleepq_remove(sleepq_t *sq, lwp_t *l)
    111 {
    112 	struct schedstate_percpu *spc;
    113 	struct cpu_info *ci;
    114 
    115 	KASSERT(lwp_locked(l, NULL));
    116 
    117 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    118 		KASSERT(sq != NULL);
    119 		TAILQ_REMOVE(sq, l, l_sleepchain);
    120 	} else {
    121 		KASSERT(sq == NULL);
    122 	}
    123 
    124 	l->l_syncobj = &sched_syncobj;
    125 	l->l_wchan = NULL;
    126 	l->l_sleepq = NULL;
    127 	l->l_flag &= ~LW_SINTR;
    128 
    129 	ci = l->l_cpu;
    130 	spc = &ci->ci_schedstate;
    131 
    132 	/*
    133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134 	 * holds it stopped set it running again.
    135 	 */
    136 	if (l->l_stat != LSSLEEP) {
    137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138 		lwp_setlock(l, spc->spc_lwplock);
    139 		return;
    140 	}
    141 
    142 	/*
    143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144 	 * about to call mi_switch(), in which case it will yield.
    145 	 */
    146 	if ((l->l_pflag & LP_RUNNING) != 0) {
    147 		l->l_stat = LSONPROC;
    148 		l->l_slptime = 0;
    149 		lwp_setlock(l, spc->spc_lwplock);
    150 		return;
    151 	}
    152 
    153 	/* Update sleep time delta, call the wake-up handler of scheduler */
    154 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    155 	sched_wakeup(l);
    156 
    157 	/* Look for a CPU to wake up */
    158 	l->l_cpu = sched_takecpu(l);
    159 	ci = l->l_cpu;
    160 	spc = &ci->ci_schedstate;
    161 
    162 	/*
    163 	 * Set it running.
    164 	 */
    165 	spc_lock(ci);
    166 	lwp_setlock(l, spc->spc_mutex);
    167 	sched_setrunnable(l);
    168 	l->l_stat = LSRUN;
    169 	l->l_slptime = 0;
    170 	sched_enqueue(l);
    171 	sched_resched_lwp(l, true);
    172 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    173 }
    174 
    175 /*
    176  * sleepq_insert:
    177  *
    178  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179  */
    180 static void
    181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182 {
    183 
    184 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    185 		KASSERT(sq == NULL);
    186 		return;
    187 	}
    188 	KASSERT(sq != NULL);
    189 
    190 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    191 		lwp_t *l2;
    192 		const pri_t pri = lwp_eprio(l);
    193 
    194 		TAILQ_FOREACH(l2, sq, l_sleepchain) {
    195 			if (lwp_eprio(l2) < pri) {
    196 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    197 				return;
    198 			}
    199 		}
    200 	}
    201 
    202 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    203 		TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
    204 	else
    205 		TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
    206 }
    207 
    208 /*
    209  * sleepq_enqueue:
    210  *
    211  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    212  *	queue must already be locked, and any interlock (such as the kernel
    213  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    214  */
    215 void
    216 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    217 {
    218 	lwp_t *l = curlwp;
    219 
    220 	KASSERT(lwp_locked(l, NULL));
    221 	KASSERT(l->l_stat == LSONPROC);
    222 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    223 
    224 	l->l_syncobj = sobj;
    225 	l->l_wchan = wchan;
    226 	l->l_sleepq = sq;
    227 	l->l_wmesg = wmesg;
    228 	l->l_slptime = 0;
    229 	l->l_stat = LSSLEEP;
    230 
    231 	sleepq_insert(sq, l, sobj);
    232 
    233 	/* Save the time when thread has slept */
    234 	l->l_slpticks = hardclock_ticks;
    235 	sched_slept(l);
    236 }
    237 
    238 /*
    239  * sleepq_block:
    240  *
    241  *	After any intermediate step such as releasing an interlock, switch.
    242  * 	sleepq_block() may return early under exceptional conditions, for
    243  * 	example if the LWP's containing process is exiting.
    244  *
    245  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    246  */
    247 int
    248 sleepq_block(int timo, bool catch_p)
    249 {
    250 	int error = 0, sig;
    251 	struct proc *p;
    252 	lwp_t *l = curlwp;
    253 	bool early = false;
    254 	int biglocks = l->l_biglocks;
    255 
    256 	ktrcsw(1, 0);
    257 
    258 	/*
    259 	 * If sleeping interruptably, check for pending signals, exits or
    260 	 * core dump events.
    261 	 */
    262 	if (catch_p) {
    263 		l->l_flag |= LW_SINTR;
    264 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    265 			l->l_flag &= ~LW_CANCELLED;
    266 			error = EINTR;
    267 			early = true;
    268 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    269 			early = true;
    270 	}
    271 
    272 	if (early) {
    273 		/* lwp_unsleep() will release the lock */
    274 		lwp_unsleep(l, true);
    275 	} else {
    276 		if (timo) {
    277 			callout_schedule(&l->l_timeout_ch, timo);
    278 		}
    279 		spc_lock(l->l_cpu);
    280 		mi_switch(l);
    281 
    282 		/* The LWP and sleep queue are now unlocked. */
    283 		if (timo) {
    284 			/*
    285 			 * Even if the callout appears to have fired, we
    286 			 * need to stop it in order to synchronise with
    287 			 * other CPUs.  It's important that we do this in
    288 			 * this LWP's context, and not during wakeup, in
    289 			 * order to keep the callout & its cache lines
    290 			 * co-located on the CPU with the LWP.
    291 			 */
    292 			if (callout_halt(&l->l_timeout_ch, NULL))
    293 				error = EWOULDBLOCK;
    294 		}
    295 	}
    296 
    297 	if (catch_p && error == 0) {
    298 		p = l->l_proc;
    299 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    300 			error = EINTR;
    301 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    302 			/*
    303 			 * Acquiring p_lock may cause us to recurse
    304 			 * through the sleep path and back into this
    305 			 * routine, but is safe because LWPs sleeping
    306 			 * on locks are non-interruptable and we will
    307 			 * not recurse again.
    308 			 */
    309 			mutex_enter(p->p_lock);
    310 			if (((sig = sigispending(l, 0)) != 0 &&
    311 			    (sigprop[sig] & SA_STOP) == 0) ||
    312 			    (sig = issignal(l)) != 0)
    313 				error = sleepq_sigtoerror(l, sig);
    314 			mutex_exit(p->p_lock);
    315 		}
    316 	}
    317 
    318 	ktrcsw(0, 0);
    319 	if (__predict_false(biglocks != 0)) {
    320 		KERNEL_LOCK(biglocks, NULL);
    321 	}
    322 	return error;
    323 }
    324 
    325 /*
    326  * sleepq_wake:
    327  *
    328  *	Wake zero or more LWPs blocked on a single wait channel.
    329  */
    330 void
    331 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    332 {
    333 	lwp_t *l, *next;
    334 
    335 	KASSERT(mutex_owned(mp));
    336 
    337 	for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
    338 		KASSERT(l->l_sleepq == sq);
    339 		KASSERT(l->l_mutex == mp);
    340 		next = TAILQ_NEXT(l, l_sleepchain);
    341 		if (l->l_wchan != wchan)
    342 			continue;
    343 		sleepq_remove(sq, l);
    344 		if (--expected == 0)
    345 			break;
    346 	}
    347 
    348 	mutex_spin_exit(mp);
    349 }
    350 
    351 /*
    352  * sleepq_unsleep:
    353  *
    354  *	Remove an LWP from its sleep queue and set it runnable again.
    355  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    356  *	release it if "unlock" is true.
    357  */
    358 void
    359 sleepq_unsleep(lwp_t *l, bool unlock)
    360 {
    361 	sleepq_t *sq = l->l_sleepq;
    362 	kmutex_t *mp = l->l_mutex;
    363 
    364 	KASSERT(lwp_locked(l, mp));
    365 	KASSERT(l->l_wchan != NULL);
    366 
    367 	sleepq_remove(sq, l);
    368 	if (unlock) {
    369 		mutex_spin_exit(mp);
    370 	}
    371 }
    372 
    373 /*
    374  * sleepq_timeout:
    375  *
    376  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    377  *	sleep queue.
    378  */
    379 void
    380 sleepq_timeout(void *arg)
    381 {
    382 	lwp_t *l = arg;
    383 
    384 	/*
    385 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    386 	 * current mutex will also be the sleep queue mutex.
    387 	 */
    388 	lwp_lock(l);
    389 
    390 	if (l->l_wchan == NULL) {
    391 		/* Somebody beat us to it. */
    392 		lwp_unlock(l);
    393 		return;
    394 	}
    395 
    396 	lwp_unsleep(l, true);
    397 }
    398 
    399 /*
    400  * sleepq_sigtoerror:
    401  *
    402  *	Given a signal number, interpret and return an error code.
    403  */
    404 static int
    405 sleepq_sigtoerror(lwp_t *l, int sig)
    406 {
    407 	struct proc *p = l->l_proc;
    408 	int error;
    409 
    410 	KASSERT(mutex_owned(p->p_lock));
    411 
    412 	/*
    413 	 * If this sleep was canceled, don't let the syscall restart.
    414 	 */
    415 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    416 		error = EINTR;
    417 	else
    418 		error = ERESTART;
    419 
    420 	return error;
    421 }
    422 
    423 /*
    424  * sleepq_abort:
    425  *
    426  *	After a panic or during autoconfiguration, lower the interrupt
    427  *	priority level to give pending interrupts a chance to run, and
    428  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    429  *	always returns zero.
    430  */
    431 int
    432 sleepq_abort(kmutex_t *mtx, int unlock)
    433 {
    434 	int s;
    435 
    436 	s = splhigh();
    437 	splx(IPL_SAFEPRI);
    438 	splx(s);
    439 	if (mtx != NULL && unlock != 0)
    440 		mutex_exit(mtx);
    441 
    442 	return 0;
    443 }
    444 
    445 /*
    446  * sleepq_reinsert:
    447  *
    448  *	Move the possition of the lwp in the sleep queue after a possible
    449  *	change of the lwp's effective priority.
    450  */
    451 static void
    452 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    453 {
    454 
    455 	KASSERT(l->l_sleepq == sq);
    456 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    457 		return;
    458 	}
    459 
    460 	/*
    461 	 * Don't let the sleep queue become empty, even briefly.
    462 	 * cv_signal() and cv_broadcast() inspect it without the
    463 	 * sleep queue lock held and need to see a non-empty queue
    464 	 * head if there are waiters.
    465 	 */
    466 	if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
    467 		return;
    468 	}
    469 	TAILQ_REMOVE(sq, l, l_sleepchain);
    470 	sleepq_insert(sq, l, l->l_syncobj);
    471 }
    472 
    473 /*
    474  * sleepq_changepri:
    475  *
    476  *	Adjust the priority of an LWP residing on a sleepq.
    477  */
    478 void
    479 sleepq_changepri(lwp_t *l, pri_t pri)
    480 {
    481 	sleepq_t *sq = l->l_sleepq;
    482 
    483 	KASSERT(lwp_locked(l, NULL));
    484 
    485 	l->l_priority = pri;
    486 	sleepq_reinsert(sq, l);
    487 }
    488 
    489 /*
    490  * sleepq_changepri:
    491  *
    492  *	Adjust the lended priority of an LWP residing on a sleepq.
    493  */
    494 void
    495 sleepq_lendpri(lwp_t *l, pri_t pri)
    496 {
    497 	sleepq_t *sq = l->l_sleepq;
    498 
    499 	KASSERT(lwp_locked(l, NULL));
    500 
    501 	l->l_inheritedprio = pri;
    502 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    503 	sleepq_reinsert(sq, l);
    504 }
    505