Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.63
      1 /*	$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.63 2020/03/26 19:46:42 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/intr.h>
     44 #include <sys/pool.h>
     45 #include <sys/proc.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/sched.h>
     48 #include <sys/systm.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/ktrace.h>
     51 
     52 /*
     53  * for sleepq_abort:
     54  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  * priority briefly to allow interrupts, then return.  The priority to be
     56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  * maintained in the machine-dependent layers.  This priority will typically
     58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  * it can be made higher to block network software interrupts after panics.
     60  */
     61 #ifndef	IPL_SAFEPRI
     62 #define	IPL_SAFEPRI	0
     63 #endif
     64 
     65 static int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by mtsleep() and condition variables. */
     68 sleeptab_t	sleeptab __cacheline_aligned;
     69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70 
     71 /*
     72  * sleeptab_init:
     73  *
     74  *	Initialize a sleep table.
     75  */
     76 void
     77 sleeptab_init(sleeptab_t *st)
     78 {
     79 	static bool again;
     80 	int i;
     81 
     82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83 		if (!again) {
     84 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     85 			    IPL_SCHED);
     86 		}
     87 		sleepq_init(&st->st_queue[i]);
     88 	}
     89 	again = true;
     90 }
     91 
     92 /*
     93  * sleepq_init:
     94  *
     95  *	Prepare a sleep queue for use.
     96  */
     97 void
     98 sleepq_init(sleepq_t *sq)
     99 {
    100 
    101 	LIST_INIT(sq);
    102 }
    103 
    104 /*
    105  * sleepq_remove:
    106  *
    107  *	Remove an LWP from a sleep queue and wake it up.
    108  */
    109 void
    110 sleepq_remove(sleepq_t *sq, lwp_t *l)
    111 {
    112 	struct schedstate_percpu *spc;
    113 	struct cpu_info *ci;
    114 
    115 	KASSERT(lwp_locked(l, NULL));
    116 
    117 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    118 		KASSERT(sq != NULL);
    119 		LIST_REMOVE(l, l_sleepchain);
    120 	} else {
    121 		KASSERT(sq == NULL);
    122 	}
    123 
    124 	l->l_syncobj = &sched_syncobj;
    125 	l->l_wchan = NULL;
    126 	l->l_sleepq = NULL;
    127 	l->l_flag &= ~LW_SINTR;
    128 
    129 	ci = l->l_cpu;
    130 	spc = &ci->ci_schedstate;
    131 
    132 	/*
    133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134 	 * holds it stopped set it running again.
    135 	 */
    136 	if (l->l_stat != LSSLEEP) {
    137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138 		lwp_setlock(l, spc->spc_lwplock);
    139 		return;
    140 	}
    141 
    142 	/*
    143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144 	 * about to call mi_switch(), in which case it will yield.
    145 	 */
    146 	if ((l->l_pflag & LP_RUNNING) != 0) {
    147 		l->l_stat = LSONPROC;
    148 		l->l_slptime = 0;
    149 		lwp_setlock(l, spc->spc_lwplock);
    150 		return;
    151 	}
    152 
    153 	/* Update sleep time delta, call the wake-up handler of scheduler */
    154 	l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
    155 	sched_wakeup(l);
    156 
    157 	/* Look for a CPU to wake up */
    158 	l->l_cpu = sched_takecpu(l);
    159 	ci = l->l_cpu;
    160 	spc = &ci->ci_schedstate;
    161 
    162 	/*
    163 	 * Set it running.
    164 	 */
    165 	spc_lock(ci);
    166 	lwp_setlock(l, spc->spc_mutex);
    167 	sched_setrunnable(l);
    168 	l->l_stat = LSRUN;
    169 	l->l_slptime = 0;
    170 	sched_enqueue(l);
    171 	sched_resched_lwp(l, true);
    172 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    173 }
    174 
    175 /*
    176  * sleepq_insert:
    177  *
    178  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179  */
    180 static void
    181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182 {
    183 
    184 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    185 		KASSERT(sq == NULL);
    186 		return;
    187 	}
    188 	KASSERT(sq != NULL);
    189 
    190 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    191 		lwp_t *l2;
    192 		const pri_t pri = lwp_eprio(l);
    193 
    194 		LIST_FOREACH(l2, sq, l_sleepchain) {
    195 			if (lwp_eprio(l2) < pri) {
    196 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    197 				return;
    198 			}
    199 		}
    200 	}
    201 
    202 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    203 }
    204 
    205 /*
    206  * sleepq_enqueue:
    207  *
    208  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    209  *	queue must already be locked, and any interlock (such as the kernel
    210  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    211  */
    212 void
    213 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
    214 {
    215 	lwp_t *l = curlwp;
    216 
    217 	KASSERT(lwp_locked(l, NULL));
    218 	KASSERT(l->l_stat == LSONPROC);
    219 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    220 
    221 	l->l_syncobj = sobj;
    222 	l->l_wchan = wchan;
    223 	l->l_sleepq = sq;
    224 	l->l_wmesg = wmesg;
    225 	l->l_slptime = 0;
    226 	l->l_stat = LSSLEEP;
    227 
    228 	sleepq_insert(sq, l, sobj);
    229 
    230 	/* Save the time when thread has slept */
    231 	l->l_slpticks = hardclock_ticks;
    232 	sched_slept(l);
    233 }
    234 
    235 /*
    236  * sleepq_block:
    237  *
    238  *	After any intermediate step such as releasing an interlock, switch.
    239  * 	sleepq_block() may return early under exceptional conditions, for
    240  * 	example if the LWP's containing process is exiting.
    241  *
    242  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    243  */
    244 int
    245 sleepq_block(int timo, bool catch_p)
    246 {
    247 	int error = 0, sig;
    248 	struct proc *p;
    249 	lwp_t *l = curlwp;
    250 	bool early = false;
    251 	int biglocks = l->l_biglocks;
    252 
    253 	ktrcsw(1, 0);
    254 
    255 	/*
    256 	 * If sleeping interruptably, check for pending signals, exits or
    257 	 * core dump events.
    258 	 */
    259 	if (catch_p) {
    260 		l->l_flag |= LW_SINTR;
    261 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    262 			l->l_flag &= ~LW_CANCELLED;
    263 			error = EINTR;
    264 			early = true;
    265 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    266 			early = true;
    267 	}
    268 
    269 	if (early) {
    270 		/* lwp_unsleep() will release the lock */
    271 		lwp_unsleep(l, true);
    272 	} else {
    273 		if (timo) {
    274 			callout_schedule(&l->l_timeout_ch, timo);
    275 		}
    276 		spc_lock(l->l_cpu);
    277 		mi_switch(l);
    278 
    279 		/* The LWP and sleep queue are now unlocked. */
    280 		if (timo) {
    281 			/*
    282 			 * Even if the callout appears to have fired, we
    283 			 * need to stop it in order to synchronise with
    284 			 * other CPUs.  It's important that we do this in
    285 			 * this LWP's context, and not during wakeup, in
    286 			 * order to keep the callout & its cache lines
    287 			 * co-located on the CPU with the LWP.
    288 			 */
    289 			if (callout_halt(&l->l_timeout_ch, NULL))
    290 				error = EWOULDBLOCK;
    291 		}
    292 	}
    293 
    294 	if (catch_p && error == 0) {
    295 		p = l->l_proc;
    296 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    297 			error = EINTR;
    298 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    299 			/*
    300 			 * Acquiring p_lock may cause us to recurse
    301 			 * through the sleep path and back into this
    302 			 * routine, but is safe because LWPs sleeping
    303 			 * on locks are non-interruptable and we will
    304 			 * not recurse again.
    305 			 */
    306 			mutex_enter(p->p_lock);
    307 			if (((sig = sigispending(l, 0)) != 0 &&
    308 			    (sigprop[sig] & SA_STOP) == 0) ||
    309 			    (sig = issignal(l)) != 0)
    310 				error = sleepq_sigtoerror(l, sig);
    311 			mutex_exit(p->p_lock);
    312 		}
    313 	}
    314 
    315 	ktrcsw(0, 0);
    316 	if (__predict_false(biglocks != 0)) {
    317 		KERNEL_LOCK(biglocks, NULL);
    318 	}
    319 	return error;
    320 }
    321 
    322 /*
    323  * sleepq_wake:
    324  *
    325  *	Wake zero or more LWPs blocked on a single wait channel.
    326  */
    327 void
    328 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    329 {
    330 	lwp_t *l, *next;
    331 
    332 	KASSERT(mutex_owned(mp));
    333 
    334 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    335 		KASSERT(l->l_sleepq == sq);
    336 		KASSERT(l->l_mutex == mp);
    337 		next = LIST_NEXT(l, l_sleepchain);
    338 		if (l->l_wchan != wchan)
    339 			continue;
    340 		sleepq_remove(sq, l);
    341 		if (--expected == 0)
    342 			break;
    343 	}
    344 
    345 	mutex_spin_exit(mp);
    346 }
    347 
    348 /*
    349  * sleepq_unsleep:
    350  *
    351  *	Remove an LWP from its sleep queue and set it runnable again.
    352  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    353  *	release it if "unlock" is true.
    354  */
    355 void
    356 sleepq_unsleep(lwp_t *l, bool unlock)
    357 {
    358 	sleepq_t *sq = l->l_sleepq;
    359 	kmutex_t *mp = l->l_mutex;
    360 
    361 	KASSERT(lwp_locked(l, mp));
    362 	KASSERT(l->l_wchan != NULL);
    363 
    364 	sleepq_remove(sq, l);
    365 	if (unlock) {
    366 		mutex_spin_exit(mp);
    367 	}
    368 }
    369 
    370 /*
    371  * sleepq_timeout:
    372  *
    373  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    374  *	sleep queue.
    375  */
    376 void
    377 sleepq_timeout(void *arg)
    378 {
    379 	lwp_t *l = arg;
    380 
    381 	/*
    382 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    383 	 * current mutex will also be the sleep queue mutex.
    384 	 */
    385 	lwp_lock(l);
    386 
    387 	if (l->l_wchan == NULL) {
    388 		/* Somebody beat us to it. */
    389 		lwp_unlock(l);
    390 		return;
    391 	}
    392 
    393 	lwp_unsleep(l, true);
    394 }
    395 
    396 /*
    397  * sleepq_sigtoerror:
    398  *
    399  *	Given a signal number, interpret and return an error code.
    400  */
    401 static int
    402 sleepq_sigtoerror(lwp_t *l, int sig)
    403 {
    404 	struct proc *p = l->l_proc;
    405 	int error;
    406 
    407 	KASSERT(mutex_owned(p->p_lock));
    408 
    409 	/*
    410 	 * If this sleep was canceled, don't let the syscall restart.
    411 	 */
    412 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    413 		error = EINTR;
    414 	else
    415 		error = ERESTART;
    416 
    417 	return error;
    418 }
    419 
    420 /*
    421  * sleepq_abort:
    422  *
    423  *	After a panic or during autoconfiguration, lower the interrupt
    424  *	priority level to give pending interrupts a chance to run, and
    425  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    426  *	always returns zero.
    427  */
    428 int
    429 sleepq_abort(kmutex_t *mtx, int unlock)
    430 {
    431 	int s;
    432 
    433 	s = splhigh();
    434 	splx(IPL_SAFEPRI);
    435 	splx(s);
    436 	if (mtx != NULL && unlock != 0)
    437 		mutex_exit(mtx);
    438 
    439 	return 0;
    440 }
    441 
    442 /*
    443  * sleepq_reinsert:
    444  *
    445  *	Move the possition of the lwp in the sleep queue after a possible
    446  *	change of the lwp's effective priority.
    447  */
    448 static void
    449 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    450 {
    451 
    452 	KASSERT(l->l_sleepq == sq);
    453 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    454 		return;
    455 	}
    456 
    457 	/*
    458 	 * Don't let the sleep queue become empty, even briefly.
    459 	 * cv_signal() and cv_broadcast() inspect it without the
    460 	 * sleep queue lock held and need to see a non-empty queue
    461 	 * head if there are waiters.
    462 	 */
    463 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    464 		return;
    465 	}
    466 	LIST_REMOVE(l, l_sleepchain);
    467 	sleepq_insert(sq, l, l->l_syncobj);
    468 }
    469 
    470 /*
    471  * sleepq_changepri:
    472  *
    473  *	Adjust the priority of an LWP residing on a sleepq.
    474  */
    475 void
    476 sleepq_changepri(lwp_t *l, pri_t pri)
    477 {
    478 	sleepq_t *sq = l->l_sleepq;
    479 
    480 	KASSERT(lwp_locked(l, NULL));
    481 
    482 	l->l_priority = pri;
    483 	sleepq_reinsert(sq, l);
    484 }
    485 
    486 /*
    487  * sleepq_changepri:
    488  *
    489  *	Adjust the lended priority of an LWP residing on a sleepq.
    490  */
    491 void
    492 sleepq_lendpri(lwp_t *l, pri_t pri)
    493 {
    494 	sleepq_t *sq = l->l_sleepq;
    495 
    496 	KASSERT(lwp_locked(l, NULL));
    497 
    498 	l->l_inheritedprio = pri;
    499 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    500 	sleepq_reinsert(sq, l);
    501 }
    502