kern_sleepq.c revision 1.65 1 /* $NetBSD: kern_sleepq.c,v 1.65 2020/04/13 15:54:45 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.65 2020/04/13 15:54:45 maxv Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/intr.h>
44 #include <sys/pool.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/systm.h>
49 #include <sys/sleepq.h>
50 #include <sys/ktrace.h>
51
52 /*
53 * for sleepq_abort:
54 * During autoconfiguration or after a panic, a sleep will simply lower the
55 * priority briefly to allow interrupts, then return. The priority to be
56 * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57 * maintained in the machine-dependent layers. This priority will typically
58 * be 0, or the lowest priority that is safe for use on the interrupt stack;
59 * it can be made higher to block network software interrupts after panics.
60 */
61 #ifndef IPL_SAFEPRI
62 #define IPL_SAFEPRI 0
63 #endif
64
65 static int sleepq_sigtoerror(lwp_t *, int);
66
67 /* General purpose sleep table, used by mtsleep() and condition variables. */
68 sleeptab_t sleeptab __cacheline_aligned;
69 sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70
71 /*
72 * sleeptab_init:
73 *
74 * Initialize a sleep table.
75 */
76 void
77 sleeptab_init(sleeptab_t *st)
78 {
79 static bool again;
80 int i;
81
82 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 if (!again) {
84 mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 IPL_SCHED);
86 }
87 sleepq_init(&st->st_queue[i]);
88 }
89 again = true;
90 }
91
92 /*
93 * sleepq_init:
94 *
95 * Prepare a sleep queue for use.
96 */
97 void
98 sleepq_init(sleepq_t *sq)
99 {
100
101 LIST_INIT(sq);
102 }
103
104 /*
105 * sleepq_remove:
106 *
107 * Remove an LWP from a sleep queue and wake it up.
108 */
109 void
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 struct schedstate_percpu *spc;
113 struct cpu_info *ci;
114
115 KASSERT(lwp_locked(l, NULL));
116
117 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 KASSERT(sq != NULL);
119 LIST_REMOVE(l, l_sleepchain);
120 } else {
121 KASSERT(sq == NULL);
122 }
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, spc->spc_lwplock);
139 return;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_pflag & LP_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, spc->spc_lwplock);
150 return;
151 }
152
153 /* Update sleep time delta, call the wake-up handler of scheduler */
154 l->l_slpticksum += (getticks() - l->l_slpticks);
155 sched_wakeup(l);
156
157 /* Look for a CPU to wake up */
158 l->l_cpu = sched_takecpu(l);
159 ci = l->l_cpu;
160 spc = &ci->ci_schedstate;
161
162 /*
163 * Set it running.
164 */
165 spc_lock(ci);
166 lwp_setlock(l, spc->spc_mutex);
167 sched_setrunnable(l);
168 l->l_stat = LSRUN;
169 l->l_slptime = 0;
170 sched_enqueue(l);
171 sched_resched_lwp(l, true);
172 /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 }
174
175 /*
176 * sleepq_insert:
177 *
178 * Insert an LWP into the sleep queue, optionally sorting by priority.
179 */
180 static void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183
184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 KASSERT(sq == NULL);
186 return;
187 }
188 KASSERT(sq != NULL);
189
190 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 lwp_t *l2;
192 const pri_t pri = lwp_eprio(l);
193
194 LIST_FOREACH(l2, sq, l_sleepchain) {
195 if (lwp_eprio(l2) < pri) {
196 LIST_INSERT_BEFORE(l2, l, l_sleepchain);
197 return;
198 }
199 }
200 }
201
202 LIST_INSERT_HEAD(sq, l, l_sleepchain);
203 }
204
205 /*
206 * sleepq_enqueue:
207 *
208 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
209 * queue must already be locked, and any interlock (such as the kernel
210 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
211 */
212 void
213 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
214 {
215 lwp_t *l = curlwp;
216
217 KASSERT(lwp_locked(l, NULL));
218 KASSERT(l->l_stat == LSONPROC);
219 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
220
221 l->l_syncobj = sobj;
222 l->l_wchan = wchan;
223 l->l_sleepq = sq;
224 l->l_wmesg = wmesg;
225 l->l_slptime = 0;
226 l->l_stat = LSSLEEP;
227
228 sleepq_insert(sq, l, sobj);
229
230 /* Save the time when thread has slept */
231 l->l_slpticks = getticks();
232 sched_slept(l);
233 }
234
235 /*
236 * sleepq_block:
237 *
238 * After any intermediate step such as releasing an interlock, switch.
239 * sleepq_block() may return early under exceptional conditions, for
240 * example if the LWP's containing process is exiting.
241 *
242 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
243 */
244 int
245 sleepq_block(int timo, bool catch_p)
246 {
247 int error = 0, sig;
248 struct proc *p;
249 lwp_t *l = curlwp;
250 bool early = false;
251 int biglocks = l->l_biglocks;
252
253 ktrcsw(1, 0);
254
255 /*
256 * If sleeping interruptably, check for pending signals, exits or
257 * core dump events. XXX The set of LW_SINTR here assumes no unlock
258 * between sleepq_enqueue() and sleepq_block(). Unlock between
259 * those only happens with turnstiles, which never set catch_p.
260 * Ugly but safe.
261 */
262 if (catch_p) {
263 l->l_flag |= LW_SINTR;
264 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
265 l->l_flag &= ~LW_CANCELLED;
266 error = EINTR;
267 early = true;
268 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
269 early = true;
270 }
271
272 if (early) {
273 /* lwp_unsleep() will release the lock */
274 lwp_unsleep(l, true);
275 } else {
276 if (timo) {
277 l->l_flag &= ~LW_STIMO;
278 callout_schedule(&l->l_timeout_ch, timo);
279 }
280 spc_lock(l->l_cpu);
281 mi_switch(l);
282
283 /* The LWP and sleep queue are now unlocked. */
284 if (timo) {
285 /*
286 * Even if the callout appears to have fired, we
287 * need to stop it in order to synchronise with
288 * other CPUs. It's important that we do this in
289 * this LWP's context, and not during wakeup, in
290 * order to keep the callout & its cache lines
291 * co-located on the CPU with the LWP.
292 */
293 (void)callout_halt(&l->l_timeout_ch, NULL);
294 error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
295 }
296 }
297
298 if (catch_p && error == 0) {
299 p = l->l_proc;
300 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
301 error = EINTR;
302 else if ((l->l_flag & LW_PENDSIG) != 0) {
303 /*
304 * Acquiring p_lock may cause us to recurse
305 * through the sleep path and back into this
306 * routine, but is safe because LWPs sleeping
307 * on locks are non-interruptable and we will
308 * not recurse again.
309 */
310 mutex_enter(p->p_lock);
311 if (((sig = sigispending(l, 0)) != 0 &&
312 (sigprop[sig] & SA_STOP) == 0) ||
313 (sig = issignal(l)) != 0)
314 error = sleepq_sigtoerror(l, sig);
315 mutex_exit(p->p_lock);
316 }
317 }
318
319 ktrcsw(0, 0);
320 if (__predict_false(biglocks != 0)) {
321 KERNEL_LOCK(biglocks, NULL);
322 }
323 return error;
324 }
325
326 /*
327 * sleepq_wake:
328 *
329 * Wake zero or more LWPs blocked on a single wait channel.
330 */
331 void
332 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
333 {
334 lwp_t *l, *next;
335
336 KASSERT(mutex_owned(mp));
337
338 for (l = LIST_FIRST(sq); l != NULL; l = next) {
339 KASSERT(l->l_sleepq == sq);
340 KASSERT(l->l_mutex == mp);
341 next = LIST_NEXT(l, l_sleepchain);
342 if (l->l_wchan != wchan)
343 continue;
344 sleepq_remove(sq, l);
345 if (--expected == 0)
346 break;
347 }
348
349 mutex_spin_exit(mp);
350 }
351
352 /*
353 * sleepq_unsleep:
354 *
355 * Remove an LWP from its sleep queue and set it runnable again.
356 * sleepq_unsleep() is called with the LWP's mutex held, and will
357 * release it if "unlock" is true.
358 */
359 void
360 sleepq_unsleep(lwp_t *l, bool unlock)
361 {
362 sleepq_t *sq = l->l_sleepq;
363 kmutex_t *mp = l->l_mutex;
364
365 KASSERT(lwp_locked(l, mp));
366 KASSERT(l->l_wchan != NULL);
367
368 sleepq_remove(sq, l);
369 if (unlock) {
370 mutex_spin_exit(mp);
371 }
372 }
373
374 /*
375 * sleepq_timeout:
376 *
377 * Entered via the callout(9) subsystem to time out an LWP that is on a
378 * sleep queue.
379 */
380 void
381 sleepq_timeout(void *arg)
382 {
383 lwp_t *l = arg;
384
385 /*
386 * Lock the LWP. Assuming it's still on the sleep queue, its
387 * current mutex will also be the sleep queue mutex.
388 */
389 lwp_lock(l);
390
391 if (l->l_wchan == NULL) {
392 /* Somebody beat us to it. */
393 lwp_unlock(l);
394 return;
395 }
396
397 l->l_flag |= LW_STIMO;
398 lwp_unsleep(l, true);
399 }
400
401 /*
402 * sleepq_sigtoerror:
403 *
404 * Given a signal number, interpret and return an error code.
405 */
406 static int
407 sleepq_sigtoerror(lwp_t *l, int sig)
408 {
409 struct proc *p = l->l_proc;
410 int error;
411
412 KASSERT(mutex_owned(p->p_lock));
413
414 /*
415 * If this sleep was canceled, don't let the syscall restart.
416 */
417 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
418 error = EINTR;
419 else
420 error = ERESTART;
421
422 return error;
423 }
424
425 /*
426 * sleepq_abort:
427 *
428 * After a panic or during autoconfiguration, lower the interrupt
429 * priority level to give pending interrupts a chance to run, and
430 * then return. Called if sleepq_dontsleep() returns non-zero, and
431 * always returns zero.
432 */
433 int
434 sleepq_abort(kmutex_t *mtx, int unlock)
435 {
436 int s;
437
438 s = splhigh();
439 splx(IPL_SAFEPRI);
440 splx(s);
441 if (mtx != NULL && unlock != 0)
442 mutex_exit(mtx);
443
444 return 0;
445 }
446
447 /*
448 * sleepq_reinsert:
449 *
450 * Move the possition of the lwp in the sleep queue after a possible
451 * change of the lwp's effective priority.
452 */
453 static void
454 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
455 {
456
457 KASSERT(l->l_sleepq == sq);
458 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
459 return;
460 }
461
462 /*
463 * Don't let the sleep queue become empty, even briefly.
464 * cv_signal() and cv_broadcast() inspect it without the
465 * sleep queue lock held and need to see a non-empty queue
466 * head if there are waiters.
467 */
468 if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
469 return;
470 }
471 LIST_REMOVE(l, l_sleepchain);
472 sleepq_insert(sq, l, l->l_syncobj);
473 }
474
475 /*
476 * sleepq_changepri:
477 *
478 * Adjust the priority of an LWP residing on a sleepq.
479 */
480 void
481 sleepq_changepri(lwp_t *l, pri_t pri)
482 {
483 sleepq_t *sq = l->l_sleepq;
484
485 KASSERT(lwp_locked(l, NULL));
486
487 l->l_priority = pri;
488 sleepq_reinsert(sq, l);
489 }
490
491 /*
492 * sleepq_changepri:
493 *
494 * Adjust the lended priority of an LWP residing on a sleepq.
495 */
496 void
497 sleepq_lendpri(lwp_t *l, pri_t pri)
498 {
499 sleepq_t *sq = l->l_sleepq;
500
501 KASSERT(lwp_locked(l, NULL));
502
503 l->l_inheritedprio = pri;
504 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
505 sleepq_reinsert(sq, l);
506 }
507