Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.69
      1 /*	$NetBSD: kern_sleepq.c,v 1.69 2020/10/23 00:25:45 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     34  * interfaces.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.69 2020/10/23 00:25:45 thorpej Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/kernel.h>
     42 #include <sys/cpu.h>
     43 #include <sys/intr.h>
     44 #include <sys/pool.h>
     45 #include <sys/proc.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/sched.h>
     48 #include <sys/systm.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/ktrace.h>
     51 
     52 /*
     53  * for sleepq_abort:
     54  * During autoconfiguration or after a panic, a sleep will simply lower the
     55  * priority briefly to allow interrupts, then return.  The priority to be
     56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     57  * maintained in the machine-dependent layers.  This priority will typically
     58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     59  * it can be made higher to block network software interrupts after panics.
     60  */
     61 #ifndef	IPL_SAFEPRI
     62 #define	IPL_SAFEPRI	0
     63 #endif
     64 
     65 static int	sleepq_sigtoerror(lwp_t *, int);
     66 
     67 /* General purpose sleep table, used by mtsleep() and condition variables. */
     68 sleeptab_t	sleeptab __cacheline_aligned;
     69 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     70 
     71 /*
     72  * sleeptab_init:
     73  *
     74  *	Initialize a sleep table.
     75  */
     76 void
     77 sleeptab_init(sleeptab_t *st)
     78 {
     79 	static bool again;
     80 	int i;
     81 
     82 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     83 		if (!again) {
     84 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     85 			    IPL_SCHED);
     86 		}
     87 		sleepq_init(&st->st_queue[i]);
     88 	}
     89 	again = true;
     90 }
     91 
     92 /*
     93  * sleepq_init:
     94  *
     95  *	Prepare a sleep queue for use.
     96  */
     97 void
     98 sleepq_init(sleepq_t *sq)
     99 {
    100 
    101 	LIST_INIT(sq);
    102 }
    103 
    104 /*
    105  * sleepq_remove:
    106  *
    107  *	Remove an LWP from a sleep queue and wake it up.
    108  */
    109 void
    110 sleepq_remove(sleepq_t *sq, lwp_t *l)
    111 {
    112 	struct schedstate_percpu *spc;
    113 	struct cpu_info *ci;
    114 
    115 	KASSERT(lwp_locked(l, NULL));
    116 
    117 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    118 		KASSERT(sq != NULL);
    119 		LIST_REMOVE(l, l_sleepchain);
    120 	} else {
    121 		KASSERT(sq == NULL);
    122 	}
    123 
    124 	l->l_syncobj = &sched_syncobj;
    125 	l->l_wchan = NULL;
    126 	l->l_sleepq = NULL;
    127 	l->l_flag &= ~LW_SINTR;
    128 
    129 	ci = l->l_cpu;
    130 	spc = &ci->ci_schedstate;
    131 
    132 	/*
    133 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    134 	 * holds it stopped set it running again.
    135 	 */
    136 	if (l->l_stat != LSSLEEP) {
    137 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    138 		lwp_setlock(l, spc->spc_lwplock);
    139 		return;
    140 	}
    141 
    142 	/*
    143 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    144 	 * about to call mi_switch(), in which case it will yield.
    145 	 */
    146 	if ((l->l_pflag & LP_RUNNING) != 0) {
    147 		l->l_stat = LSONPROC;
    148 		l->l_slptime = 0;
    149 		lwp_setlock(l, spc->spc_lwplock);
    150 		return;
    151 	}
    152 
    153 	/* Update sleep time delta, call the wake-up handler of scheduler */
    154 	l->l_slpticksum += (getticks() - l->l_slpticks);
    155 	sched_wakeup(l);
    156 
    157 	/* Look for a CPU to wake up */
    158 	l->l_cpu = sched_takecpu(l);
    159 	ci = l->l_cpu;
    160 	spc = &ci->ci_schedstate;
    161 
    162 	/*
    163 	 * Set it running.
    164 	 */
    165 	spc_lock(ci);
    166 	lwp_setlock(l, spc->spc_mutex);
    167 	sched_setrunnable(l);
    168 	l->l_stat = LSRUN;
    169 	l->l_slptime = 0;
    170 	sched_enqueue(l);
    171 	sched_resched_lwp(l, true);
    172 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    173 }
    174 
    175 /*
    176  * sleepq_insert:
    177  *
    178  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    179  */
    180 static void
    181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    182 {
    183 
    184 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    185 		KASSERT(sq == NULL);
    186 		return;
    187 	}
    188 	KASSERT(sq != NULL);
    189 
    190 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    191 		lwp_t *l2, *l_last = NULL;
    192 		const pri_t pri = lwp_eprio(l);
    193 
    194 		LIST_FOREACH(l2, sq, l_sleepchain) {
    195 			l_last = l2;
    196 			if (lwp_eprio(l2) < pri) {
    197 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    198 				return;
    199 			}
    200 		}
    201 		/*
    202 		 * Ensure FIFO ordering if no waiters are of lower priority.
    203 		 */
    204 		if (l_last != NULL) {
    205 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    206 			return;
    207 		}
    208 	}
    209 
    210 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    211 }
    212 
    213 /*
    214  * sleepq_enqueue:
    215  *
    216  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    217  *	queue must already be locked, and any interlock (such as the kernel
    218  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    219  */
    220 void
    221 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    222     bool catch_p)
    223 {
    224 	lwp_t *l = curlwp;
    225 
    226 	KASSERT(lwp_locked(l, NULL));
    227 	KASSERT(l->l_stat == LSONPROC);
    228 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    229 	KASSERT((l->l_flag & LW_SINTR) == 0);
    230 
    231 	l->l_syncobj = sobj;
    232 	l->l_wchan = wchan;
    233 	l->l_sleepq = sq;
    234 	l->l_wmesg = wmesg;
    235 	l->l_slptime = 0;
    236 	l->l_stat = LSSLEEP;
    237 	if (catch_p)
    238 		l->l_flag |= LW_SINTR;
    239 
    240 	sleepq_insert(sq, l, sobj);
    241 
    242 	/* Save the time when thread has slept */
    243 	l->l_slpticks = getticks();
    244 	sched_slept(l);
    245 }
    246 
    247 /*
    248  * sleepq_transfer:
    249  *
    250  *	Move an LWP from one sleep queue to another.  Both sleep queues
    251  *	must already be locked.
    252  *
    253  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    254  *	sobj, and mutex.  The interruptible flag will also be updated.
    255  */
    256 void
    257 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    258     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    259 {
    260 
    261 	KASSERT(l->l_sleepq == from_sq);
    262 
    263 	LIST_REMOVE(l, l_sleepchain);
    264 	l->l_syncobj = sobj;
    265 	l->l_wchan = wchan;
    266 	l->l_sleepq = sq;
    267 	l->l_wmesg = wmesg;
    268 
    269 	if (catch_p)
    270 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    271 	else
    272 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    273 
    274 	/*
    275 	 * This allows the transfer from one sleepq to another where
    276 	 * it is known that they're both protected by the same lock.
    277 	 */
    278 	if (mp != NULL)
    279 		lwp_setlock(l, mp);
    280 
    281 	sleepq_insert(sq, l, sobj);
    282 }
    283 
    284 /*
    285  * sleepq_uncatch:
    286  *
    287  *	Mark the LWP as no longer sleeping interruptibly.
    288  */
    289 void
    290 sleepq_uncatch(lwp_t *l)
    291 {
    292 	l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    293 }
    294 
    295 /*
    296  * sleepq_block:
    297  *
    298  *	After any intermediate step such as releasing an interlock, switch.
    299  * 	sleepq_block() may return early under exceptional conditions, for
    300  * 	example if the LWP's containing process is exiting.
    301  *
    302  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    303  */
    304 int
    305 sleepq_block(int timo, bool catch_p)
    306 {
    307 	int error = 0, sig;
    308 	struct proc *p;
    309 	lwp_t *l = curlwp;
    310 	bool early = false;
    311 	int biglocks = l->l_biglocks;
    312 
    313 	ktrcsw(1, 0);
    314 
    315 	/*
    316 	 * If sleeping interruptably, check for pending signals, exits or
    317 	 * core dump events.
    318 	 *
    319 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    320 	 * to catch or not catch sleep interruptions, which might change
    321 	 * while we are sleeping.  It is independent from LW_SINTR because
    322 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    323 	 */
    324 	if (catch_p) {
    325 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    326 			l->l_flag &= ~LW_CANCELLED;
    327 			error = EINTR;
    328 			early = true;
    329 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    330 			early = true;
    331 		l->l_flag |= LW_CATCHINTR;
    332 	} else
    333 		l->l_flag &= ~LW_CATCHINTR;
    334 
    335 	if (early) {
    336 		/* lwp_unsleep() will release the lock */
    337 		lwp_unsleep(l, true);
    338 	} else {
    339 		/*
    340 		 * The LWP may have already been awoken if the caller
    341 		 * dropped the sleep queue lock between sleepq_enqueue() and
    342 		 * sleepq_block().  If that happends l_stat will be LSONPROC
    343 		 * and mi_switch() will treat this as a preemption.  No need
    344 		 * to do anything special here.
    345 		 */
    346 		if (timo) {
    347 			l->l_flag &= ~LW_STIMO;
    348 			callout_schedule(&l->l_timeout_ch, timo);
    349 		}
    350 		spc_lock(l->l_cpu);
    351 		mi_switch(l);
    352 
    353 		/* The LWP and sleep queue are now unlocked. */
    354 		if (timo) {
    355 			/*
    356 			 * Even if the callout appears to have fired, we
    357 			 * need to stop it in order to synchronise with
    358 			 * other CPUs.  It's important that we do this in
    359 			 * this LWP's context, and not during wakeup, in
    360 			 * order to keep the callout & its cache lines
    361 			 * co-located on the CPU with the LWP.
    362 			 */
    363 			(void)callout_halt(&l->l_timeout_ch, NULL);
    364 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    365 		}
    366 	}
    367 
    368 	/*
    369 	 * LW_CATCHINTR is only modified in this function OR when we
    370 	 * are asleep (with the sleepq locked).  We can therefore safely
    371 	 * test it unlocked here as it is guaranteed to be stable by
    372 	 * virtue of us running.
    373 	 *
    374 	 * We do not bother clearing it if set; that would require us
    375 	 * to take the LWP lock, and it doesn't seem worth the hassle
    376 	 * considering it is only meaningful here inside this function,
    377 	 * and is set to reflect intent upon entry.
    378 	 */
    379 	if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
    380 		p = l->l_proc;
    381 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    382 			error = EINTR;
    383 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    384 			/*
    385 			 * Acquiring p_lock may cause us to recurse
    386 			 * through the sleep path and back into this
    387 			 * routine, but is safe because LWPs sleeping
    388 			 * on locks are non-interruptable and we will
    389 			 * not recurse again.
    390 			 */
    391 			mutex_enter(p->p_lock);
    392 			if (((sig = sigispending(l, 0)) != 0 &&
    393 			    (sigprop[sig] & SA_STOP) == 0) ||
    394 			    (sig = issignal(l)) != 0)
    395 				error = sleepq_sigtoerror(l, sig);
    396 			mutex_exit(p->p_lock);
    397 		}
    398 	}
    399 
    400 	ktrcsw(0, 0);
    401 	if (__predict_false(biglocks != 0)) {
    402 		KERNEL_LOCK(biglocks, NULL);
    403 	}
    404 	return error;
    405 }
    406 
    407 /*
    408  * sleepq_wake:
    409  *
    410  *	Wake zero or more LWPs blocked on a single wait channel.
    411  */
    412 void
    413 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    414 {
    415 	lwp_t *l, *next;
    416 
    417 	KASSERT(mutex_owned(mp));
    418 
    419 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    420 		KASSERT(l->l_sleepq == sq);
    421 		KASSERT(l->l_mutex == mp);
    422 		next = LIST_NEXT(l, l_sleepchain);
    423 		if (l->l_wchan != wchan)
    424 			continue;
    425 		sleepq_remove(sq, l);
    426 		if (--expected == 0)
    427 			break;
    428 	}
    429 
    430 	mutex_spin_exit(mp);
    431 }
    432 
    433 /*
    434  * sleepq_unsleep:
    435  *
    436  *	Remove an LWP from its sleep queue and set it runnable again.
    437  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    438  *	release it if "unlock" is true.
    439  */
    440 void
    441 sleepq_unsleep(lwp_t *l, bool unlock)
    442 {
    443 	sleepq_t *sq = l->l_sleepq;
    444 	kmutex_t *mp = l->l_mutex;
    445 
    446 	KASSERT(lwp_locked(l, mp));
    447 	KASSERT(l->l_wchan != NULL);
    448 
    449 	sleepq_remove(sq, l);
    450 	if (unlock) {
    451 		mutex_spin_exit(mp);
    452 	}
    453 }
    454 
    455 /*
    456  * sleepq_timeout:
    457  *
    458  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    459  *	sleep queue.
    460  */
    461 void
    462 sleepq_timeout(void *arg)
    463 {
    464 	lwp_t *l = arg;
    465 
    466 	/*
    467 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    468 	 * current mutex will also be the sleep queue mutex.
    469 	 */
    470 	lwp_lock(l);
    471 
    472 	if (l->l_wchan == NULL) {
    473 		/* Somebody beat us to it. */
    474 		lwp_unlock(l);
    475 		return;
    476 	}
    477 
    478 	l->l_flag |= LW_STIMO;
    479 	lwp_unsleep(l, true);
    480 }
    481 
    482 /*
    483  * sleepq_sigtoerror:
    484  *
    485  *	Given a signal number, interpret and return an error code.
    486  */
    487 static int
    488 sleepq_sigtoerror(lwp_t *l, int sig)
    489 {
    490 	struct proc *p = l->l_proc;
    491 	int error;
    492 
    493 	KASSERT(mutex_owned(p->p_lock));
    494 
    495 	/*
    496 	 * If this sleep was canceled, don't let the syscall restart.
    497 	 */
    498 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    499 		error = EINTR;
    500 	else
    501 		error = ERESTART;
    502 
    503 	return error;
    504 }
    505 
    506 /*
    507  * sleepq_abort:
    508  *
    509  *	After a panic or during autoconfiguration, lower the interrupt
    510  *	priority level to give pending interrupts a chance to run, and
    511  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    512  *	always returns zero.
    513  */
    514 int
    515 sleepq_abort(kmutex_t *mtx, int unlock)
    516 {
    517 	int s;
    518 
    519 	s = splhigh();
    520 	splx(IPL_SAFEPRI);
    521 	splx(s);
    522 	if (mtx != NULL && unlock != 0)
    523 		mutex_exit(mtx);
    524 
    525 	return 0;
    526 }
    527 
    528 /*
    529  * sleepq_reinsert:
    530  *
    531  *	Move the possition of the lwp in the sleep queue after a possible
    532  *	change of the lwp's effective priority.
    533  */
    534 static void
    535 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    536 {
    537 
    538 	KASSERT(l->l_sleepq == sq);
    539 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    540 		return;
    541 	}
    542 
    543 	/*
    544 	 * Don't let the sleep queue become empty, even briefly.
    545 	 * cv_signal() and cv_broadcast() inspect it without the
    546 	 * sleep queue lock held and need to see a non-empty queue
    547 	 * head if there are waiters.
    548 	 */
    549 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    550 		return;
    551 	}
    552 	LIST_REMOVE(l, l_sleepchain);
    553 	sleepq_insert(sq, l, l->l_syncobj);
    554 }
    555 
    556 /*
    557  * sleepq_changepri:
    558  *
    559  *	Adjust the priority of an LWP residing on a sleepq.
    560  */
    561 void
    562 sleepq_changepri(lwp_t *l, pri_t pri)
    563 {
    564 	sleepq_t *sq = l->l_sleepq;
    565 
    566 	KASSERT(lwp_locked(l, NULL));
    567 
    568 	l->l_priority = pri;
    569 	sleepq_reinsert(sq, l);
    570 }
    571 
    572 /*
    573  * sleepq_changepri:
    574  *
    575  *	Adjust the lended priority of an LWP residing on a sleepq.
    576  */
    577 void
    578 sleepq_lendpri(lwp_t *l, pri_t pri)
    579 {
    580 	sleepq_t *sq = l->l_sleepq;
    581 
    582 	KASSERT(lwp_locked(l, NULL));
    583 
    584 	l->l_inheritedprio = pri;
    585 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    586 	sleepq_reinsert(sq, l);
    587 }
    588