kern_sleepq.c revision 1.7.2.12 1 /* $NetBSD: kern_sleepq.c,v 1.7.2.12 2007/09/09 23:12:20 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.12 2007/09/09 23:12:20 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110
111 KASSERT(lwp_locked(l, sq->sq_mutex));
112 KASSERT(sq->sq_waiters > 0);
113
114 sq->sq_waiters--;
115 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
116
117 #ifdef DIAGNOSTIC
118 if (sq->sq_waiters == 0)
119 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
120 else
121 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
122 #endif
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, &spc->spc_lwplock);
139 return 0;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_flag & LW_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, &spc->spc_lwplock);
150 return 0;
151 }
152
153 /*
154 * Set it running. We'll try to get the last CPU that ran
155 * this LWP to pick it up again.
156 */
157 spc_lock(ci);
158 lwp_setlock(l, spc->spc_mutex);
159 sched_setrunnable(l);
160 l->l_stat = LSRUN;
161 l->l_slptime = 0;
162 if ((l->l_flag & LW_INMEM) != 0) {
163 sched_enqueue(l, false);
164 if (lwp_eprio(l) >= PRI_KERNEL ||
165 ci->ci_curlwp == ci->ci_data.cpu_idlelwp)
166 cpu_need_resched(ci, RESCHED_IMMED);
167 spc_unlock(ci);
168 return 0;
169 }
170 spc_unlock(ci);
171 return 1;
172 }
173
174 /*
175 * sleepq_insert:
176 *
177 * Insert an LWP into the sleep queue, optionally sorting by priority.
178 */
179 inline void
180 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
181 {
182 lwp_t *l2;
183 const int pri = lwp_eprio(l);
184
185 switch (sobj->sobj_flag) {
186 case SOBJ_SLEEPQ_SORTED:
187 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
188 if (lwp_eprio(l2) < pri) {
189 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
190 return;
191 }
192 }
193 /* FALLTHROUGH */
194 case SOBJ_SLEEPQ_FIFO:
195 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
196 break;
197 case SOBJ_SLEEPQ_LIFO:
198 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
199 break;
200 }
201 }
202
203 /*
204 * sleepq_enqueue:
205 *
206 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
207 * queue must already be locked, and any interlock (such as the kernel
208 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
209 */
210 void
211 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
212 syncobj_t *sobj)
213 {
214 lwp_t *l = curlwp;
215
216 KASSERT(mutex_owned(sq->sq_mutex));
217 KASSERT(l->l_stat == LSONPROC);
218 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
219
220 l->l_syncobj = sobj;
221 l->l_wchan = wchan;
222 l->l_sleepq = sq;
223 l->l_wmesg = wmesg;
224 l->l_slptime = 0;
225 l->l_priority = pri;
226 l->l_stat = LSSLEEP;
227 l->l_sleeperr = 0;
228
229 sq->sq_waiters++;
230 sleepq_insert(sq, l, sobj);
231 }
232
233 /*
234 * sleepq_block:
235 *
236 * After any intermediate step such as releasing an interlock, switch.
237 * sleepq_block() may return early under exceptional conditions, for
238 * example if the LWP's containing process is exiting.
239 */
240 int
241 sleepq_block(int timo, bool catch)
242 {
243 int error = 0, sig;
244 struct proc *p;
245 lwp_t *l = curlwp;
246 bool early = false;
247
248 ktrcsw(1, 0);
249
250 /*
251 * If sleeping interruptably, check for pending signals, exits or
252 * core dump events.
253 */
254 if (catch) {
255 l->l_flag |= LW_SINTR;
256 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
257 early = true;
258 }
259 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
260 l->l_flag &= ~LW_CANCELLED;
261 early = true;
262 }
263 }
264
265 if (early) {
266 /* lwp_unsleep() will release the lock */
267 lwp_unsleep(l);
268 } else {
269 if (timo)
270 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
271
272 mi_switch(l);
273 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
274
275 /*
276 * When we reach this point, the LWP and sleep queue are unlocked.
277 */
278 if (timo) {
279 /*
280 * Even if the callout appears to have fired, we need to
281 * stop it in order to synchronise with other CPUs.
282 */
283 if (callout_stop(&l->l_tsleep_ch))
284 error = EWOULDBLOCK;
285 }
286 }
287
288 if (catch && error == 0) {
289 p = l->l_proc;
290 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
291 error = EINTR;
292 else if ((l->l_flag & LW_PENDSIG) != 0) {
293 mutex_enter(&p->p_smutex);
294 if ((sig = issignal(l)) != 0)
295 error = sleepq_sigtoerror(l, sig);
296 mutex_exit(&p->p_smutex);
297 }
298 }
299
300 ktrcsw(0, 0);
301
302 KERNEL_LOCK(l->l_biglocks, l);
303 return error;
304 }
305
306 /*
307 * sleepq_wake:
308 *
309 * Wake zero or more LWPs blocked on a single wait channel.
310 */
311 lwp_t *
312 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
313 {
314 lwp_t *l, *next;
315 int swapin = 0;
316
317 KASSERT(mutex_owned(sq->sq_mutex));
318
319 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
320 KASSERT(l->l_sleepq == sq);
321 next = TAILQ_NEXT(l, l_sleepchain);
322 if (l->l_wchan != wchan)
323 continue;
324 swapin |= sleepq_remove(sq, l);
325 if (--expected == 0)
326 break;
327 }
328
329 sleepq_unlock(sq);
330
331 /*
332 * If there are newly awakend threads that need to be swapped in,
333 * then kick the swapper into action.
334 */
335 if (swapin)
336 uvm_kick_scheduler();
337
338 return l;
339 }
340
341 /*
342 * sleepq_unsleep:
343 *
344 * Remove an LWP from its sleep queue and set it runnable again.
345 * sleepq_unsleep() is called with the LWP's mutex held, and will
346 * always release it.
347 */
348 void
349 sleepq_unsleep(lwp_t *l)
350 {
351 sleepq_t *sq = l->l_sleepq;
352 int swapin;
353
354 KASSERT(lwp_locked(l, NULL));
355 KASSERT(l->l_wchan != NULL);
356 KASSERT(l->l_mutex == sq->sq_mutex);
357
358 swapin = sleepq_remove(sq, l);
359 sleepq_unlock(sq);
360
361 if (swapin)
362 uvm_kick_scheduler();
363 }
364
365 /*
366 * sleepq_timeout:
367 *
368 * Entered via the callout(9) subsystem to time out an LWP that is on a
369 * sleep queue.
370 */
371 void
372 sleepq_timeout(void *arg)
373 {
374 lwp_t *l = arg;
375
376 /*
377 * Lock the LWP. Assuming it's still on the sleep queue, its
378 * current mutex will also be the sleep queue mutex.
379 */
380 lwp_lock(l);
381
382 if (l->l_wchan == NULL) {
383 /* Somebody beat us to it. */
384 lwp_unlock(l);
385 return;
386 }
387
388 lwp_unsleep(l);
389 }
390
391 /*
392 * sleepq_sigtoerror:
393 *
394 * Given a signal number, interpret and return an error code.
395 */
396 int
397 sleepq_sigtoerror(lwp_t *l, int sig)
398 {
399 struct proc *p = l->l_proc;
400 int error;
401
402 KASSERT(mutex_owned(&p->p_smutex));
403
404 /*
405 * If this sleep was canceled, don't let the syscall restart.
406 */
407 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
408 error = EINTR;
409 else
410 error = ERESTART;
411
412 return error;
413 }
414
415 /*
416 * sleepq_abort:
417 *
418 * After a panic or during autoconfiguration, lower the interrupt
419 * priority level to give pending interrupts a chance to run, and
420 * then return. Called if sleepq_dontsleep() returns non-zero, and
421 * always returns zero.
422 */
423 int
424 sleepq_abort(kmutex_t *mtx, int unlock)
425 {
426 extern int safepri;
427 int s;
428
429 s = splhigh();
430 splx(safepri);
431 splx(s);
432 if (mtx != NULL && unlock != 0)
433 mutex_exit(mtx);
434
435 return 0;
436 }
437
438 /*
439 * sleepq_changepri:
440 *
441 * Adjust the priority of an LWP residing on a sleepq. This method
442 * will only alter the user priority; the effective priority is
443 * assumed to have been fixed at the time of insertion into the queue.
444 */
445 void
446 sleepq_changepri(lwp_t *l, pri_t pri)
447 {
448 sleepq_t *sq = l->l_sleepq;
449 pri_t opri;
450
451 KASSERT(lwp_locked(l, sq->sq_mutex));
452
453 opri = lwp_eprio(l);
454 l->l_usrpri = pri;
455 l->l_priority = sched_kpri(l);
456
457 if (lwp_eprio(l) != opri) {
458 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
459 sleepq_insert(sq, l, l->l_syncobj);
460 }
461 }
462
463 void
464 sleepq_lendpri(lwp_t *l, pri_t pri)
465 {
466 sleepq_t *sq = l->l_sleepq;
467 pri_t opri;
468
469 KASSERT(lwp_locked(l, sq->sq_mutex));
470
471 opri = lwp_eprio(l);
472 l->l_inheritedprio = pri;
473
474 if (lwp_eprio(l) != opri &&
475 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
476 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
477 sleepq_insert(sq, l, l->l_syncobj);
478 }
479 }
480