kern_sleepq.c revision 1.7.2.13 1 /* $NetBSD: kern_sleepq.c,v 1.7.2.13 2007/10/09 13:44:28 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.13 2007/10/09 13:44:28 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110 pri_t pri;
111
112 KASSERT(lwp_locked(l, sq->sq_mutex));
113 KASSERT(sq->sq_waiters > 0);
114
115 sq->sq_waiters--;
116 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
117
118 #ifdef DIAGNOSTIC
119 if (sq->sq_waiters == 0)
120 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
121 else
122 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
123 #endif
124
125 l->l_syncobj = &sched_syncobj;
126 l->l_wchan = NULL;
127 l->l_sleepq = NULL;
128 l->l_flag &= ~LW_SINTR;
129
130 ci = l->l_cpu;
131 spc = &ci->ci_schedstate;
132
133 /*
134 * If not sleeping, the LWP must have been suspended. Let whoever
135 * holds it stopped set it running again.
136 */
137 if (l->l_stat != LSSLEEP) {
138 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
139 lwp_setlock(l, &spc->spc_lwplock);
140 return 0;
141 }
142
143 /*
144 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
145 * about to call mi_switch(), in which case it will yield.
146 */
147 if ((l->l_flag & LW_RUNNING) != 0) {
148 l->l_stat = LSONPROC;
149 l->l_slptime = 0;
150 lwp_setlock(l, &spc->spc_lwplock);
151 return 0;
152 }
153
154 /*
155 * Set it running. We'll try to get the last CPU that ran
156 * this LWP to pick it up again.
157 */
158 spc_lock(ci);
159 lwp_setlock(l, spc->spc_mutex);
160 sched_setrunnable(l);
161 l->l_stat = LSRUN;
162 l->l_slptime = 0;
163 if ((l->l_flag & LW_INMEM) != 0) {
164 sched_enqueue(l, false);
165 if (lwp_eprio(l) >= PRI_KERNEL ||
166 ci->ci_curlwp == ci->ci_data.cpu_idlelwp)
167 cpu_need_resched(ci, RESCHED_IMMED);
168 spc_unlock(ci);
169 return 0;
170 }
171 spc_unlock(ci);
172 return 1;
173 }
174
175 /*
176 * sleepq_insert:
177 *
178 * Insert an LWP into the sleep queue, optionally sorting by priority.
179 */
180 inline void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183 lwp_t *l2;
184 const int pri = lwp_eprio(l);
185
186 switch (sobj->sobj_flag) {
187 case SOBJ_SLEEPQ_SORTED:
188 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
189 if (lwp_eprio(l2) < pri) {
190 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
191 return;
192 }
193 }
194 /* FALLTHROUGH */
195 case SOBJ_SLEEPQ_FIFO:
196 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
197 break;
198 case SOBJ_SLEEPQ_LIFO:
199 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
200 break;
201 }
202 }
203
204 /*
205 * sleepq_enqueue:
206 *
207 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
208 * queue must already be locked, and any interlock (such as the kernel
209 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
210 */
211 void
212 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
213 syncobj_t *sobj)
214 {
215 lwp_t *l = curlwp;
216
217 KASSERT(mutex_owned(sq->sq_mutex));
218 KASSERT(l->l_stat == LSONPROC);
219 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
220
221 l->l_syncobj = sobj;
222 l->l_wchan = wchan;
223 l->l_sleepq = sq;
224 l->l_wmesg = wmesg;
225 l->l_slptime = 0;
226 l->l_priority = pri;
227 l->l_stat = LSSLEEP;
228 l->l_sleeperr = 0;
229
230 sq->sq_waiters++;
231 sleepq_insert(sq, l, sobj);
232 }
233
234 /*
235 * sleepq_block:
236 *
237 * After any intermediate step such as releasing an interlock, switch.
238 * sleepq_block() may return early under exceptional conditions, for
239 * example if the LWP's containing process is exiting.
240 */
241 int
242 sleepq_block(int timo, bool catch)
243 {
244 int error = 0, sig;
245 struct proc *p;
246 lwp_t *l = curlwp;
247 bool early = false;
248
249 ktrcsw(1, 0);
250
251 /*
252 * If sleeping interruptably, check for pending signals, exits or
253 * core dump events.
254 */
255 if (catch) {
256 l->l_flag |= LW_SINTR;
257 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
258 early = true;
259 }
260 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
261 l->l_flag &= ~LW_CANCELLED;
262 early = true;
263 }
264 }
265
266 if (early) {
267 /* lwp_unsleep() will release the lock */
268 lwp_unsleep(l);
269 } else {
270 if (timo)
271 callout_schedule(&l->l_timeout_ch, timo);
272
273 mi_switch(l);
274 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
275
276 /*
277 * When we reach this point, the LWP and sleep queue are unlocked.
278 */
279 if (timo) {
280 /*
281 * Even if the callout appears to have fired, we need to
282 * stop it in order to synchronise with other CPUs.
283 */
284 if (callout_stop(&l->l_timeout_ch))
285 error = EWOULDBLOCK;
286 }
287 }
288
289 if (catch && error == 0) {
290 p = l->l_proc;
291 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
292 error = EINTR;
293 else if ((l->l_flag & LW_PENDSIG) != 0) {
294 mutex_enter(&p->p_smutex);
295 if ((sig = issignal(l)) != 0)
296 error = sleepq_sigtoerror(l, sig);
297 mutex_exit(&p->p_smutex);
298 }
299 }
300
301 ktrcsw(0, 0);
302
303 KERNEL_LOCK(l->l_biglocks, l);
304 return error;
305 }
306
307 /*
308 * sleepq_wake:
309 *
310 * Wake zero or more LWPs blocked on a single wait channel.
311 */
312 lwp_t *
313 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
314 {
315 lwp_t *l, *next;
316 int swapin = 0;
317
318 KASSERT(mutex_owned(sq->sq_mutex));
319
320 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
321 KASSERT(l->l_sleepq == sq);
322 next = TAILQ_NEXT(l, l_sleepchain);
323 if (l->l_wchan != wchan)
324 continue;
325 swapin |= sleepq_remove(sq, l);
326 if (--expected == 0)
327 break;
328 }
329
330 sleepq_unlock(sq);
331
332 /*
333 * If there are newly awakend threads that need to be swapped in,
334 * then kick the swapper into action.
335 */
336 if (swapin)
337 uvm_kick_scheduler();
338
339 return l;
340 }
341
342 /*
343 * sleepq_unsleep:
344 *
345 * Remove an LWP from its sleep queue and set it runnable again.
346 * sleepq_unsleep() is called with the LWP's mutex held, and will
347 * always release it.
348 */
349 void
350 sleepq_unsleep(lwp_t *l)
351 {
352 sleepq_t *sq = l->l_sleepq;
353 int swapin;
354
355 KASSERT(lwp_locked(l, NULL));
356 KASSERT(l->l_wchan != NULL);
357 KASSERT(l->l_mutex == sq->sq_mutex);
358
359 swapin = sleepq_remove(sq, l);
360 sleepq_unlock(sq);
361
362 if (swapin)
363 uvm_kick_scheduler();
364 }
365
366 /*
367 * sleepq_timeout:
368 *
369 * Entered via the callout(9) subsystem to time out an LWP that is on a
370 * sleep queue.
371 */
372 void
373 sleepq_timeout(void *arg)
374 {
375 lwp_t *l = arg;
376
377 /*
378 * Lock the LWP. Assuming it's still on the sleep queue, its
379 * current mutex will also be the sleep queue mutex.
380 */
381 lwp_lock(l);
382
383 if (l->l_wchan == NULL) {
384 /* Somebody beat us to it. */
385 lwp_unlock(l);
386 return;
387 }
388
389 lwp_unsleep(l);
390 }
391
392 /*
393 * sleepq_sigtoerror:
394 *
395 * Given a signal number, interpret and return an error code.
396 */
397 int
398 sleepq_sigtoerror(lwp_t *l, int sig)
399 {
400 struct proc *p = l->l_proc;
401 int error;
402
403 KASSERT(mutex_owned(&p->p_smutex));
404
405 /*
406 * If this sleep was canceled, don't let the syscall restart.
407 */
408 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
409 error = EINTR;
410 else
411 error = ERESTART;
412
413 return error;
414 }
415
416 /*
417 * sleepq_abort:
418 *
419 * After a panic or during autoconfiguration, lower the interrupt
420 * priority level to give pending interrupts a chance to run, and
421 * then return. Called if sleepq_dontsleep() returns non-zero, and
422 * always returns zero.
423 */
424 int
425 sleepq_abort(kmutex_t *mtx, int unlock)
426 {
427 extern int safepri;
428 int s;
429
430 s = splhigh();
431 splx(safepri);
432 splx(s);
433 if (mtx != NULL && unlock != 0)
434 mutex_exit(mtx);
435
436 return 0;
437 }
438
439 /*
440 * sleepq_changepri:
441 *
442 * Adjust the priority of an LWP residing on a sleepq. This method
443 * will only alter the user priority; the effective priority is
444 * assumed to have been fixed at the time of insertion into the queue.
445 */
446 void
447 sleepq_changepri(lwp_t *l, pri_t pri)
448 {
449 sleepq_t *sq = l->l_sleepq;
450 pri_t opri;
451
452 KASSERT(lwp_locked(l, sq->sq_mutex));
453
454 opri = lwp_eprio(l);
455 l->l_usrpri = pri;
456 l->l_priority = sched_kpri(l);
457
458 if (lwp_eprio(l) != opri) {
459 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
460 sleepq_insert(sq, l, l->l_syncobj);
461 }
462 }
463
464 void
465 sleepq_lendpri(lwp_t *l, pri_t pri)
466 {
467 sleepq_t *sq = l->l_sleepq;
468 pri_t opri;
469
470 KASSERT(lwp_locked(l, sq->sq_mutex));
471
472 opri = lwp_eprio(l);
473 l->l_inheritedprio = pri;
474
475 if (lwp_eprio(l) != opri &&
476 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
477 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
478 sleepq_insert(sq, l, l->l_syncobj);
479 }
480 }
481