Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.7.2.17
      1 /*	$NetBSD: kern_sleepq.c,v 1.7.2.17 2007/10/16 10:53:25 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     41  * interfaces.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.17 2007/10/16 10:53:25 ad Exp $");
     46 
     47 #include <sys/param.h>
     48 #include <sys/lock.h>
     49 #include <sys/kernel.h>
     50 #include <sys/cpu.h>
     51 #include <sys/pool.h>
     52 #include <sys/proc.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/sched.h>
     55 #include <sys/systm.h>
     56 #include <sys/sleepq.h>
     57 #include <sys/ktrace.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 int	sleepq_sigtoerror(lwp_t *, int);
     62 
     63 /* General purpose sleep table, used by ltsleep() and condition variables. */
     64 sleeptab_t	sleeptab;
     65 
     66 /*
     67  * sleeptab_init:
     68  *
     69  *	Initialize a sleep table.
     70  */
     71 void
     72 sleeptab_init(sleeptab_t *st)
     73 {
     74 	sleepq_t *sq;
     75 	int i;
     76 
     77 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     78 		sq = &st->st_queues[i].st_queue;
     79 		mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
     80 		sleepq_init(sq, &st->st_queues[i].st_mutex);
     81 	}
     82 }
     83 
     84 /*
     85  * sleepq_init:
     86  *
     87  *	Prepare a sleep queue for use.
     88  */
     89 void
     90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
     91 {
     92 
     93 	sq->sq_waiters = 0;
     94 	sq->sq_mutex = mtx;
     95 	TAILQ_INIT(&sq->sq_queue);
     96 }
     97 
     98 /*
     99  * sleepq_remove:
    100  *
    101  *	Remove an LWP from a sleep queue and wake it up.  Return non-zero if
    102  *	the LWP is swapped out; if so the caller needs to awaken the swapper
    103  *	to bring the LWP into memory.
    104  */
    105 int
    106 sleepq_remove(sleepq_t *sq, lwp_t *l)
    107 {
    108 	struct schedstate_percpu *spc;
    109 	struct cpu_info *ci;
    110 	pri_t pri;
    111 
    112 	KASSERT(lwp_locked(l, sq->sq_mutex));
    113 	KASSERT(sq->sq_waiters > 0);
    114 
    115 	sq->sq_waiters--;
    116 	TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    117 
    118 #ifdef DIAGNOSTIC
    119 	if (sq->sq_waiters == 0)
    120 		KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
    121 	else
    122 		KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
    123 #endif
    124 
    125 	l->l_syncobj = &sched_syncobj;
    126 	l->l_wchan = NULL;
    127 	l->l_sleepq = NULL;
    128 	l->l_flag &= ~LW_SINTR;
    129 
    130 	ci = l->l_cpu;
    131 	spc = &ci->ci_schedstate;
    132 
    133 	/*
    134 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    135 	 * holds it stopped set it running again.
    136 	 */
    137 	if (l->l_stat != LSSLEEP) {
    138 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    139 		lwp_setlock(l, &spc->spc_lwplock);
    140 		return 0;
    141 	}
    142 
    143 	/*
    144 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    145 	 * about to call mi_switch(), in which case it will yield.
    146 	 */
    147 	if ((l->l_flag & LW_RUNNING) != 0) {
    148 		l->l_stat = LSONPROC;
    149 		l->l_slptime = 0;
    150 		lwp_setlock(l, &spc->spc_lwplock);
    151 		return 0;
    152 	}
    153 
    154 	/*
    155 	 * Call the wake-up handler of scheduler.
    156 	 * It might change the CPU for this thread.
    157 	 */
    158 	sched_wakeup(l);
    159 	ci = l->l_cpu;
    160 	spc = &ci->ci_schedstate;
    161 
    162 	/*
    163 	 * Set it running.  We'll try to get the last CPU that ran
    164 	 * this LWP to pick it up again.
    165 	 */
    166 	spc_lock(ci);
    167 	lwp_setlock(l, spc->spc_mutex);
    168 	sched_setrunnable(l);
    169 	l->l_stat = LSRUN;
    170 	l->l_slptime = 0;
    171 	if ((l->l_flag & LW_INMEM) != 0) {
    172 		sched_enqueue(l, false);
    173 		pri = lwp_eprio(l);
    174 		/* XXX This test is not good enough! */
    175 		if ((pri < spc->spc_curpriority && pri >= PRI_KERNEL) ||
    176 #ifdef MULTIPROCESSOR
    177 		   ci->ci_curlwp == ci->ci_data.cpu_idlelwp) {
    178 #else
    179 		   curlwp == ci->ci_data.cpu_idlelwp) {
    180 #endif
    181 			cpu_need_resched(ci, RESCHED_IMMED);
    182 		}
    183 		spc_unlock(ci);
    184 		return 0;
    185 	}
    186 	spc_unlock(ci);
    187 	return 1;
    188 }
    189 
    190 /*
    191  * sleepq_insert:
    192  *
    193  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    194  */
    195 inline void
    196 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    197 {
    198 	lwp_t *l2;
    199 	const int pri = lwp_eprio(l);
    200 
    201 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    202 		TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
    203 			if (lwp_eprio(l2) < pri) {
    204 				TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
    205 				return;
    206 			}
    207 		}
    208 	}
    209 
    210 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
    211 		TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
    212 	else
    213 		TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
    214 }
    215 
    216 /*
    217  * sleepq_enqueue:
    218  *
    219  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    220  *	queue must already be locked, and any interlock (such as the kernel
    221  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    222  */
    223 void
    224 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
    225 	       syncobj_t *sobj)
    226 {
    227 	lwp_t *l = curlwp;
    228 
    229 	KASSERT(mutex_owned(sq->sq_mutex));
    230 	KASSERT(l->l_stat == LSONPROC);
    231 	KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
    232 
    233 	l->l_syncobj = sobj;
    234 	l->l_wchan = wchan;
    235 	l->l_sleepq = sq;
    236 	l->l_wmesg = wmesg;
    237 	l->l_slptime = 0;
    238 	l->l_priority = pri;
    239 	l->l_stat = LSSLEEP;
    240 	l->l_sleeperr = 0;
    241 
    242 	sq->sq_waiters++;
    243 	sleepq_insert(sq, l, sobj);
    244 	sched_slept(l);
    245 }
    246 
    247 /*
    248  * sleepq_block:
    249  *
    250  *	After any intermediate step such as releasing an interlock, switch.
    251  * 	sleepq_block() may return early under exceptional conditions, for
    252  * 	example if the LWP's containing process is exiting.
    253  */
    254 int
    255 sleepq_block(int timo, bool catch)
    256 {
    257 	int error = 0, sig;
    258 	struct proc *p;
    259 	lwp_t *l = curlwp;
    260 	bool early = false;
    261 
    262 	ktrcsw(1, 0);
    263 
    264 	/*
    265 	 * If sleeping interruptably, check for pending signals, exits or
    266 	 * core dump events.
    267 	 */
    268 	if (catch) {
    269 		l->l_flag |= LW_SINTR;
    270 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    271 			l->l_flag &= ~LW_CANCELLED;
    272 			error = EINTR;
    273 			early = true;
    274 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    275 			early = true;
    276 	}
    277 
    278 	if (early) {
    279 		/* lwp_unsleep() will release the lock */
    280 		lwp_unsleep(l);
    281 	} else {
    282 		if (timo)
    283 			callout_schedule(&l->l_timeout_ch, timo);
    284 		mi_switch(l);
    285 
    286 		/* The LWP and sleep queue are now unlocked. */
    287 		if (timo) {
    288 			/*
    289 			 * Even if the callout appears to have fired, we need to
    290 			 * stop it in order to synchronise with other CPUs.
    291 			 */
    292 			if (callout_stop(&l->l_timeout_ch))
    293 				error = EWOULDBLOCK;
    294 		}
    295 	}
    296 
    297 	if (catch && error == 0) {
    298 		p = l->l_proc;
    299 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    300 			error = EINTR;
    301 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    302 			mutex_enter(&p->p_smutex);
    303 			if ((sig = issignal(l)) != 0)
    304 				error = sleepq_sigtoerror(l, sig);
    305 			mutex_exit(&p->p_smutex);
    306 		}
    307 	}
    308 
    309 	ktrcsw(0, 0);
    310 
    311 	KERNEL_LOCK(l->l_biglocks, l);
    312 	return error;
    313 }
    314 
    315 /*
    316  * sleepq_wake:
    317  *
    318  *	Wake zero or more LWPs blocked on a single wait channel.
    319  */
    320 lwp_t *
    321 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
    322 {
    323 	lwp_t *l, *next;
    324 	int swapin = 0;
    325 
    326 	KASSERT(mutex_owned(sq->sq_mutex));
    327 
    328 	for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
    329 		KASSERT(l->l_sleepq == sq);
    330 		next = TAILQ_NEXT(l, l_sleepchain);
    331 		if (l->l_wchan != wchan)
    332 			continue;
    333 		swapin |= sleepq_remove(sq, l);
    334 		if (--expected == 0)
    335 			break;
    336 	}
    337 
    338 	sleepq_unlock(sq);
    339 
    340 	/*
    341 	 * If there are newly awakend threads that need to be swapped in,
    342 	 * then kick the swapper into action.
    343 	 */
    344 	if (swapin)
    345 		uvm_kick_scheduler();
    346 
    347 	return l;
    348 }
    349 
    350 /*
    351  * sleepq_unsleep:
    352  *
    353  *	Remove an LWP from its sleep queue and set it runnable again.
    354  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    355  *	always release it.
    356  */
    357 void
    358 sleepq_unsleep(lwp_t *l)
    359 {
    360 	sleepq_t *sq = l->l_sleepq;
    361 	int swapin;
    362 
    363 	KASSERT(lwp_locked(l, NULL));
    364 	KASSERT(l->l_wchan != NULL);
    365 	KASSERT(l->l_mutex == sq->sq_mutex);
    366 
    367 	swapin = sleepq_remove(sq, l);
    368 	sleepq_unlock(sq);
    369 
    370 	if (swapin)
    371 		uvm_kick_scheduler();
    372 }
    373 
    374 /*
    375  * sleepq_timeout:
    376  *
    377  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    378  *	sleep queue.
    379  */
    380 void
    381 sleepq_timeout(void *arg)
    382 {
    383 	lwp_t *l = arg;
    384 
    385 	/*
    386 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    387 	 * current mutex will also be the sleep queue mutex.
    388 	 */
    389 	lwp_lock(l);
    390 
    391 	if (l->l_wchan == NULL) {
    392 		/* Somebody beat us to it. */
    393 		lwp_unlock(l);
    394 		return;
    395 	}
    396 
    397 	lwp_unsleep(l);
    398 }
    399 
    400 /*
    401  * sleepq_sigtoerror:
    402  *
    403  *	Given a signal number, interpret and return an error code.
    404  */
    405 int
    406 sleepq_sigtoerror(lwp_t *l, int sig)
    407 {
    408 	struct proc *p = l->l_proc;
    409 	int error;
    410 
    411 	KASSERT(mutex_owned(&p->p_smutex));
    412 
    413 	/*
    414 	 * If this sleep was canceled, don't let the syscall restart.
    415 	 */
    416 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    417 		error = EINTR;
    418 	else
    419 		error = ERESTART;
    420 
    421 	return error;
    422 }
    423 
    424 /*
    425  * sleepq_abort:
    426  *
    427  *	After a panic or during autoconfiguration, lower the interrupt
    428  *	priority level to give pending interrupts a chance to run, and
    429  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    430  *	always returns zero.
    431  */
    432 int
    433 sleepq_abort(kmutex_t *mtx, int unlock)
    434 {
    435 	extern int safepri;
    436 	int s;
    437 
    438 	s = splhigh();
    439 	splx(safepri);
    440 	splx(s);
    441 	if (mtx != NULL && unlock != 0)
    442 		mutex_exit(mtx);
    443 
    444 	return 0;
    445 }
    446 
    447 /*
    448  * sleepq_changepri:
    449  *
    450  *	Adjust the priority of an LWP residing on a sleepq.  This method
    451  *	will only alter the user priority; the effective priority is
    452  *	assumed to have been fixed at the time of insertion into the queue.
    453  */
    454 void
    455 sleepq_changepri(lwp_t *l, pri_t pri)
    456 {
    457 	sleepq_t *sq = l->l_sleepq;
    458 	pri_t opri;
    459 
    460 	KASSERT(lwp_locked(l, sq->sq_mutex));
    461 
    462 	opri = lwp_eprio(l);
    463 	l->l_usrpri = pri;
    464 	l->l_priority = sched_kpri(l);
    465 
    466 	if (lwp_eprio(l) != opri) {
    467 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    468 		sleepq_insert(sq, l, l->l_syncobj);
    469 	}
    470 }
    471 
    472 void
    473 sleepq_lendpri(lwp_t *l, pri_t pri)
    474 {
    475 	sleepq_t *sq = l->l_sleepq;
    476 	pri_t opri;
    477 
    478 	KASSERT(lwp_locked(l, sq->sq_mutex));
    479 
    480 	opri = lwp_eprio(l);
    481 	l->l_inheritedprio = pri;
    482 
    483 	if (lwp_eprio(l) != opri &&
    484 	    (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    485 		TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
    486 		sleepq_insert(sq, l, l->l_syncobj);
    487 	}
    488 }
    489