kern_sleepq.c revision 1.7.2.18 1 /* $NetBSD: kern_sleepq.c,v 1.7.2.18 2007/10/16 15:34:05 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.18 2007/10/16 15:34:05 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/cpu.h>
51 #include <sys/pool.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/systm.h>
56 #include <sys/sleepq.h>
57 #include <sys/ktrace.h>
58
59 #include <uvm/uvm_extern.h>
60
61 int sleepq_sigtoerror(lwp_t *, int);
62
63 /* General purpose sleep table, used by ltsleep() and condition variables. */
64 sleeptab_t sleeptab;
65
66 /*
67 * sleeptab_init:
68 *
69 * Initialize a sleep table.
70 */
71 void
72 sleeptab_init(sleeptab_t *st)
73 {
74 sleepq_t *sq;
75 int i;
76
77 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
78 sq = &st->st_queues[i].st_queue;
79 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
80 sleepq_init(sq, &st->st_queues[i].st_mutex);
81 }
82 }
83
84 /*
85 * sleepq_init:
86 *
87 * Prepare a sleep queue for use.
88 */
89 void
90 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
91 {
92
93 sq->sq_waiters = 0;
94 sq->sq_mutex = mtx;
95 TAILQ_INIT(&sq->sq_queue);
96 }
97
98 /*
99 * sleepq_remove:
100 *
101 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
102 * the LWP is swapped out; if so the caller needs to awaken the swapper
103 * to bring the LWP into memory.
104 */
105 int
106 sleepq_remove(sleepq_t *sq, lwp_t *l)
107 {
108 struct schedstate_percpu *spc;
109 struct cpu_info *ci;
110 pri_t pri;
111
112 KASSERT(lwp_locked(l, sq->sq_mutex));
113 KASSERT(sq->sq_waiters > 0);
114
115 sq->sq_waiters--;
116 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
117
118 #ifdef DIAGNOSTIC
119 if (sq->sq_waiters == 0)
120 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
121 else
122 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
123 #endif
124
125 l->l_syncobj = &sched_syncobj;
126 l->l_wchan = NULL;
127 l->l_sleepq = NULL;
128 l->l_flag &= ~LW_SINTR;
129
130 ci = l->l_cpu;
131 spc = &ci->ci_schedstate;
132
133 /*
134 * If not sleeping, the LWP must have been suspended. Let whoever
135 * holds it stopped set it running again.
136 */
137 if (l->l_stat != LSSLEEP) {
138 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
139 lwp_setlock(l, &spc->spc_lwplock);
140 return 0;
141 }
142
143 /*
144 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
145 * about to call mi_switch(), in which case it will yield.
146 */
147 if ((l->l_flag & LW_RUNNING) != 0) {
148 l->l_stat = LSONPROC;
149 l->l_slptime = 0;
150 lwp_setlock(l, &spc->spc_lwplock);
151 return 0;
152 }
153
154 /*
155 * Call the wake-up handler of scheduler.
156 * It might change the CPU for this thread.
157 */
158 sched_wakeup(l);
159 ci = l->l_cpu;
160 spc = &ci->ci_schedstate;
161
162 /*
163 * Set it running. We'll try to get the last CPU that ran
164 * this LWP to pick it up again.
165 */
166 spc_lock(ci);
167 lwp_setlock(l, spc->spc_mutex);
168 sched_setrunnable(l);
169 l->l_stat = LSRUN;
170 l->l_slptime = 0;
171 if ((l->l_flag & LW_INMEM) != 0) {
172 sched_enqueue(l, false);
173 pri = lwp_eprio(l);
174 /* XXX This test is not good enough! */
175 if (pri > spc->spc_curpriority) {
176 cpu_need_resched(ci,
177 (pri >= PRI_KERNEL ? RESCHED_IMMED : 0));
178 }
179 spc_unlock(ci);
180 return 0;
181 }
182 spc_unlock(ci);
183 return 1;
184 }
185
186 /*
187 * sleepq_insert:
188 *
189 * Insert an LWP into the sleep queue, optionally sorting by priority.
190 */
191 inline void
192 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
193 {
194 lwp_t *l2;
195 const int pri = lwp_eprio(l);
196
197 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
198 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
199 if (lwp_eprio(l2) < pri) {
200 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
201 return;
202 }
203 }
204 }
205
206 if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
207 TAILQ_INSERT_HEAD(&sq->sq_queue, l, l_sleepchain);
208 else
209 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
210 }
211
212 /*
213 * sleepq_enqueue:
214 *
215 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
216 * queue must already be locked, and any interlock (such as the kernel
217 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
218 */
219 void
220 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
221 syncobj_t *sobj)
222 {
223 lwp_t *l = curlwp;
224
225 KASSERT(mutex_owned(sq->sq_mutex));
226 KASSERT(l->l_stat == LSONPROC);
227 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
228
229 l->l_syncobj = sobj;
230 l->l_wchan = wchan;
231 l->l_sleepq = sq;
232 l->l_wmesg = wmesg;
233 l->l_slptime = 0;
234 l->l_priority = pri;
235 l->l_stat = LSSLEEP;
236 l->l_sleeperr = 0;
237
238 sq->sq_waiters++;
239 sleepq_insert(sq, l, sobj);
240 sched_slept(l);
241 }
242
243 /*
244 * sleepq_block:
245 *
246 * After any intermediate step such as releasing an interlock, switch.
247 * sleepq_block() may return early under exceptional conditions, for
248 * example if the LWP's containing process is exiting.
249 */
250 int
251 sleepq_block(int timo, bool catch)
252 {
253 int error = 0, sig;
254 struct proc *p;
255 lwp_t *l = curlwp;
256 bool early = false;
257
258 ktrcsw(1, 0);
259
260 /*
261 * If sleeping interruptably, check for pending signals, exits or
262 * core dump events.
263 */
264 if (catch) {
265 l->l_flag |= LW_SINTR;
266 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
267 l->l_flag &= ~LW_CANCELLED;
268 error = EINTR;
269 early = true;
270 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
271 early = true;
272 }
273
274 if (early) {
275 /* lwp_unsleep() will release the lock */
276 lwp_unsleep(l);
277 } else {
278 if (timo)
279 callout_schedule(&l->l_timeout_ch, timo);
280 mi_switch(l);
281
282 /* The LWP and sleep queue are now unlocked. */
283 if (timo) {
284 /*
285 * Even if the callout appears to have fired, we need to
286 * stop it in order to synchronise with other CPUs.
287 */
288 if (callout_stop(&l->l_timeout_ch))
289 error = EWOULDBLOCK;
290 }
291 }
292
293 if (catch && error == 0) {
294 p = l->l_proc;
295 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
296 error = EINTR;
297 else if ((l->l_flag & LW_PENDSIG) != 0) {
298 mutex_enter(&p->p_smutex);
299 if ((sig = issignal(l)) != 0)
300 error = sleepq_sigtoerror(l, sig);
301 mutex_exit(&p->p_smutex);
302 }
303 }
304
305 ktrcsw(0, 0);
306
307 KERNEL_LOCK(l->l_biglocks, l);
308 return error;
309 }
310
311 /*
312 * sleepq_wake:
313 *
314 * Wake zero or more LWPs blocked on a single wait channel.
315 */
316 lwp_t *
317 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
318 {
319 lwp_t *l, *next;
320 int swapin = 0;
321
322 KASSERT(mutex_owned(sq->sq_mutex));
323
324 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
325 KASSERT(l->l_sleepq == sq);
326 next = TAILQ_NEXT(l, l_sleepchain);
327 if (l->l_wchan != wchan)
328 continue;
329 swapin |= sleepq_remove(sq, l);
330 if (--expected == 0)
331 break;
332 }
333
334 sleepq_unlock(sq);
335
336 /*
337 * If there are newly awakend threads that need to be swapped in,
338 * then kick the swapper into action.
339 */
340 if (swapin)
341 uvm_kick_scheduler();
342
343 return l;
344 }
345
346 /*
347 * sleepq_unsleep:
348 *
349 * Remove an LWP from its sleep queue and set it runnable again.
350 * sleepq_unsleep() is called with the LWP's mutex held, and will
351 * always release it.
352 */
353 void
354 sleepq_unsleep(lwp_t *l)
355 {
356 sleepq_t *sq = l->l_sleepq;
357 int swapin;
358
359 KASSERT(lwp_locked(l, NULL));
360 KASSERT(l->l_wchan != NULL);
361 KASSERT(l->l_mutex == sq->sq_mutex);
362
363 swapin = sleepq_remove(sq, l);
364 sleepq_unlock(sq);
365
366 if (swapin)
367 uvm_kick_scheduler();
368 }
369
370 /*
371 * sleepq_timeout:
372 *
373 * Entered via the callout(9) subsystem to time out an LWP that is on a
374 * sleep queue.
375 */
376 void
377 sleepq_timeout(void *arg)
378 {
379 lwp_t *l = arg;
380
381 /*
382 * Lock the LWP. Assuming it's still on the sleep queue, its
383 * current mutex will also be the sleep queue mutex.
384 */
385 lwp_lock(l);
386
387 if (l->l_wchan == NULL) {
388 /* Somebody beat us to it. */
389 lwp_unlock(l);
390 return;
391 }
392
393 lwp_unsleep(l);
394 }
395
396 /*
397 * sleepq_sigtoerror:
398 *
399 * Given a signal number, interpret and return an error code.
400 */
401 int
402 sleepq_sigtoerror(lwp_t *l, int sig)
403 {
404 struct proc *p = l->l_proc;
405 int error;
406
407 KASSERT(mutex_owned(&p->p_smutex));
408
409 /*
410 * If this sleep was canceled, don't let the syscall restart.
411 */
412 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
413 error = EINTR;
414 else
415 error = ERESTART;
416
417 return error;
418 }
419
420 /*
421 * sleepq_abort:
422 *
423 * After a panic or during autoconfiguration, lower the interrupt
424 * priority level to give pending interrupts a chance to run, and
425 * then return. Called if sleepq_dontsleep() returns non-zero, and
426 * always returns zero.
427 */
428 int
429 sleepq_abort(kmutex_t *mtx, int unlock)
430 {
431 extern int safepri;
432 int s;
433
434 s = splhigh();
435 splx(safepri);
436 splx(s);
437 if (mtx != NULL && unlock != 0)
438 mutex_exit(mtx);
439
440 return 0;
441 }
442
443 /*
444 * sleepq_changepri:
445 *
446 * Adjust the priority of an LWP residing on a sleepq. This method
447 * will only alter the user priority; the effective priority is
448 * assumed to have been fixed at the time of insertion into the queue.
449 */
450 void
451 sleepq_changepri(lwp_t *l, pri_t pri)
452 {
453 sleepq_t *sq = l->l_sleepq;
454 pri_t opri;
455
456 KASSERT(lwp_locked(l, sq->sq_mutex));
457
458 opri = lwp_eprio(l);
459 l->l_usrpri = pri;
460 l->l_priority = sched_kpri(l);
461
462 if (lwp_eprio(l) != opri) {
463 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
464 sleepq_insert(sq, l, l->l_syncobj);
465 }
466 }
467
468 void
469 sleepq_lendpri(lwp_t *l, pri_t pri)
470 {
471 sleepq_t *sq = l->l_sleepq;
472 pri_t opri;
473
474 KASSERT(lwp_locked(l, sq->sq_mutex));
475
476 opri = lwp_eprio(l);
477 l->l_inheritedprio = pri;
478
479 if (lwp_eprio(l) != opri &&
480 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
481 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
482 sleepq_insert(sq, l, l->l_syncobj);
483 }
484 }
485