kern_sleepq.c revision 1.7.2.2 1 /* $NetBSD: kern_sleepq.c,v 1.7.2.2 2007/04/10 11:41:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.2 2007/04/10 11:41:11 ad Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sleepq.h>
60 #ifdef KTRACE
61 #include <sys/ktrace.h>
62 #endif
63
64 #include <uvm/uvm_extern.h>
65
66 int sleepq_sigtoerror(struct lwp *, int);
67 void updatepri(struct lwp *);
68
69 /* General purpose sleep table, used by ltsleep() and condition variables. */
70 sleeptab_t sleeptab;
71
72 /*
73 * sleeptab_init:
74 *
75 * Initialize a sleep table.
76 */
77 void
78 sleeptab_init(sleeptab_t *st)
79 {
80 sleepq_t *sq;
81 int i;
82
83 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
85 sq = &st->st_queues[i].st_queue;
86 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
87 sleepq_init(sq, &st->st_queues[i].st_mutex);
88 #else
89 sq = &st->st_queues[i];
90 sleepq_init(sq, &sched_mutex);
91 #endif
92 }
93 }
94
95 /*
96 * sleepq_init:
97 *
98 * Prepare a sleep queue for use.
99 */
100 void
101 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
102 {
103
104 sq->sq_waiters = 0;
105 sq->sq_mutex = mtx;
106 TAILQ_INIT(&sq->sq_queue);
107 }
108
109 /*
110 * sleepq_remove:
111 *
112 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
113 * the LWP is swapped out; if so the caller needs to awaken the swapper
114 * to bring the LWP into memory.
115 */
116 int
117 sleepq_remove(sleepq_t *sq, struct lwp *l)
118 {
119 struct cpu_info *ci;
120
121 KASSERT(lwp_locked(l, sq->sq_mutex));
122 KASSERT(sq->sq_waiters > 0);
123
124 sq->sq_waiters--;
125 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
126
127 #ifdef DIAGNOSTIC
128 if (sq->sq_waiters == 0)
129 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
130 else
131 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
132 #endif
133
134 l->l_syncobj = &sched_syncobj;
135 l->l_wchan = NULL;
136 l->l_sleepq = NULL;
137 l->l_flag &= ~LW_SINTR;
138
139 /*
140 * If not sleeping, the LWP must have been suspended. Let whoever
141 * holds it stopped set it running again.
142 */
143 if (l->l_stat != LSSLEEP) {
144 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
145 lwp_setlock(l, &sched_mutex);
146 return 0;
147 }
148
149 sched_lock(1);
150 lwp_setlock(l, &sched_mutex);
151
152 /*
153 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 * about to call mi_switch(), in which case it will yield.
155 *
156 * XXXSMP Will need to change for preemption.
157 */
158 ci = l->l_cpu;
159 #ifdef MULTIPROCESSOR
160 if (ci->ci_curlwp == l) {
161 #else
162 if (l == curlwp) {
163 #endif
164 l->l_stat = LSONPROC;
165 l->l_slptime = 0;
166 sched_unlock(1);
167 return 0;
168 }
169
170 /*
171 * Set it running. We'll try to get the last CPU that ran
172 * this LWP to pick it up again.
173 */
174 if (l->l_slptime > 1)
175 updatepri(l);
176 l->l_stat = LSRUN;
177 l->l_slptime = 0;
178 if ((l->l_flag & LW_INMEM) != 0) {
179 setrunqueue(l);
180 if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
181 cpu_need_resched(ci);
182 sched_unlock(1);
183 return 0;
184 }
185
186 sched_unlock(1);
187 return 1;
188 }
189
190 /*
191 * sleepq_insert:
192 *
193 * Insert an LWP into the sleep queue, optionally sorting by priority.
194 */
195 inline void
196 sleepq_insert(sleepq_t *sq, struct lwp *l, syncobj_t *sobj)
197 {
198 struct lwp *l2;
199 const int pri = lwp_eprio(l);
200
201 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
202 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
203 if (lwp_eprio(l2) > pri) {
204 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
205 return;
206 }
207 }
208 }
209
210 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
211 }
212
213 void
214 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
215 syncobj_t *sobj)
216 {
217 struct lwp *l = curlwp;
218
219 KASSERT(mutex_owned(sq->sq_mutex));
220 KASSERT(l->l_stat == LSONPROC);
221 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
222
223 l->l_syncobj = sobj;
224 l->l_wchan = wchan;
225 l->l_sleepq = sq;
226 l->l_wmesg = wmesg;
227 l->l_slptime = 0;
228 l->l_priority = pri;
229 l->l_stat = LSSLEEP;
230 l->l_sleeperr = 0;
231
232 sq->sq_waiters++;
233 sleepq_insert(sq, l, sobj);
234 }
235
236 void
237 sleepq_switch(int timo, int catch)
238 {
239 struct lwp *l = curlwp;
240
241 #ifdef KTRACE
242 if (KTRPOINT(l->l_proc, KTR_CSW))
243 ktrcsw(l, 1, 0);
244 #endif
245
246 /*
247 * If sleeping interruptably, check for pending signals, exits or
248 * core dump events.
249 */
250 if (catch) {
251 l->l_flag |= LW_SINTR;
252 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
253 l->l_sleeperr = EPASSTHROUGH;
254 /* lwp_unsleep() will release the lock */
255 lwp_unsleep(l);
256 return;
257 }
258 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
259 l->l_flag &= ~LW_CANCELLED;
260 l->l_sleeperr = EINTR;
261 /* lwp_unsleep() will release the lock */
262 lwp_unsleep(l);
263 return;
264 }
265 }
266
267 if (timo)
268 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
269
270 mi_switch(l, NULL);
271 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
272
273 /*
274 * When we reach this point, the LWP and sleep queue are unlocked.
275 */
276 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
277 }
278
279 /*
280 * sleepq_block:
281 *
282 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
283 * queue must already be locked, and any interlock (such as the kernel
284 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
285 *
286 * sleepq_block() may return early under exceptional conditions, for
287 * example if the LWP's containing process is exiting.
288 */
289 void
290 sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
291 int timo, int catch, syncobj_t *sobj)
292 {
293
294 sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
295 sleepq_switch(timo, catch);
296 }
297
298 /*
299 * sleepq_unblock:
300 *
301 * After any intermediate step such as updating statistics, re-acquire
302 * the kernel lock and record the switch for ktrace. Note that we are
303 * no longer on the sleep queue at this point.
304 *
305 * This is split out from sleepq_block() in expectation that at some
306 * point in the future, LWPs may awake on different kernel stacks than
307 * those they went asleep on.
308 */
309 int
310 sleepq_unblock(int timo, int catch)
311 {
312 int error, expired, sig;
313 struct proc *p;
314 struct lwp *l;
315
316 l = curlwp;
317 error = l->l_sleeperr;
318
319 if (timo) {
320 /*
321 * Even if the callout appears to have fired, we need to
322 * stop it in order to synchronise with other CPUs.
323 */
324 expired = callout_expired(&l->l_tsleep_ch);
325 callout_stop(&l->l_tsleep_ch);
326 if (expired && error == 0)
327 error = EWOULDBLOCK;
328 }
329
330 if (catch && (error == 0 || error == EPASSTHROUGH)) {
331 l->l_sleeperr = 0;
332 p = l->l_proc;
333 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
334 error = EINTR;
335 else if ((l->l_flag & LW_PENDSIG) != 0) {
336 mutex_enter(&p->p_smutex);
337 if ((sig = issignal(l)) != 0)
338 error = sleepq_sigtoerror(l, sig);
339 mutex_exit(&p->p_smutex);
340 }
341 if (error == EPASSTHROUGH) {
342 /* Raced */
343 error = EINTR;
344 }
345 }
346
347 #ifdef KTRACE
348 if (KTRPOINT(l->l_proc, KTR_CSW))
349 ktrcsw(l, 0, 0);
350 #endif
351
352 KERNEL_LOCK(l->l_biglocks, l);
353 return error;
354 }
355
356 /*
357 * sleepq_wake:
358 *
359 * Wake zero or more LWPs blocked on a single wait channel.
360 */
361 void
362 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
363 {
364 struct lwp *l, *next;
365 int swapin = 0;
366
367 KASSERT(mutex_owned(sq->sq_mutex));
368
369 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
370 KASSERT(l->l_sleepq == sq);
371 next = TAILQ_NEXT(l, l_sleepchain);
372 if (l->l_wchan != wchan)
373 continue;
374 swapin |= sleepq_remove(sq, l);
375 if (--expected == 0)
376 break;
377 }
378
379 sleepq_unlock(sq);
380
381 /*
382 * If there are newly awakend threads that need to be swapped in,
383 * then kick the swapper into action.
384 */
385 if (swapin)
386 uvm_kick_scheduler();
387 }
388
389 /*
390 * sleepq_unsleep:
391 *
392 * Remove an LWP from its sleep queue and set it runnable again.
393 * sleepq_unsleep() is called with the LWP's mutex held, and will
394 * always release it.
395 */
396 void
397 sleepq_unsleep(struct lwp *l)
398 {
399 sleepq_t *sq = l->l_sleepq;
400 int swapin;
401
402 KASSERT(lwp_locked(l, NULL));
403 KASSERT(l->l_wchan != NULL);
404 KASSERT(l->l_mutex == sq->sq_mutex);
405
406 swapin = sleepq_remove(sq, l);
407 sleepq_unlock(sq);
408
409 if (swapin)
410 uvm_kick_scheduler();
411 }
412
413 /*
414 * sleepq_timeout:
415 *
416 * Entered via the callout(9) subsystem to time out an LWP that is on a
417 * sleep queue.
418 */
419 void
420 sleepq_timeout(void *arg)
421 {
422 struct lwp *l = arg;
423
424 /*
425 * Lock the LWP. Assuming it's still on the sleep queue, its
426 * current mutex will also be the sleep queue mutex.
427 */
428 lwp_lock(l);
429
430 if (l->l_wchan == NULL) {
431 /* Somebody beat us to it. */
432 lwp_unlock(l);
433 return;
434 }
435
436 lwp_unsleep(l);
437 }
438
439 /*
440 * sleepq_sigtoerror:
441 *
442 * Given a signal number, interpret and return an error code.
443 */
444 int
445 sleepq_sigtoerror(struct lwp *l, int sig)
446 {
447 struct proc *p = l->l_proc;
448 int error;
449
450 KASSERT(mutex_owned(&p->p_smutex));
451
452 /*
453 * If this sleep was canceled, don't let the syscall restart.
454 */
455 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
456 error = EINTR;
457 else
458 error = ERESTART;
459
460 return error;
461 }
462
463 /*
464 * sleepq_abort:
465 *
466 * After a panic or during autoconfiguration, lower the interrupt
467 * priority level to give pending interrupts a chance to run, and
468 * then return. Called if sleepq_dontsleep() returns non-zero, and
469 * always returns zero.
470 */
471 int
472 sleepq_abort(kmutex_t *mtx, int unlock)
473 {
474 extern int safepri;
475 int s;
476
477 s = splhigh();
478 splx(safepri);
479 splx(s);
480 if (mtx != NULL && unlock != 0)
481 mutex_exit(mtx);
482
483 return 0;
484 }
485
486 /*
487 * sleepq_changepri:
488 *
489 * Adjust the priority of an LWP residing on a sleepq. This method
490 * will only alter the user priority; the effective priority is
491 * assumed to have been fixed at the time of insertion into the queue.
492 */
493 void
494 sleepq_changepri(struct lwp *l, pri_t pri)
495 {
496
497 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
498 l->l_usrpri = pri;
499 }
500
501 void
502 sleepq_lendpri(struct lwp *l, pri_t pri)
503 {
504 sleepq_t *sq = l->l_sleepq;
505 pri_t opri;
506
507 KASSERT(lwp_locked(l, sq->sq_mutex));
508
509 opri = lwp_eprio(l);
510 l->l_inheritedprio = pri;
511
512 if (lwp_eprio(l) != opri &&
513 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
514 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
515 sleepq_insert(sq, l, l->l_syncobj);
516 }
517 }
518