kern_sleepq.c revision 1.7.2.4 1 /* $NetBSD: kern_sleepq.c,v 1.7.2.4 2007/04/10 18:34:04 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
41 * interfaces.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7.2.4 2007/04/10 18:34:04 ad Exp $");
46
47 #include "opt_multiprocessor.h"
48 #include "opt_lockdebug.h"
49 #include "opt_ktrace.h"
50
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/systm.h>
59 #include <sys/sleepq.h>
60 #ifdef KTRACE
61 #include <sys/ktrace.h>
62 #endif
63
64 #include <uvm/uvm_extern.h>
65
66 int sleepq_sigtoerror(lwp_t *, int);
67 void updatepri(lwp_t *);
68
69 /* General purpose sleep table, used by ltsleep() and condition variables. */
70 sleeptab_t sleeptab;
71
72 /*
73 * sleeptab_init:
74 *
75 * Initialize a sleep table.
76 */
77 void
78 sleeptab_init(sleeptab_t *st)
79 {
80 sleepq_t *sq;
81 int i;
82
83 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
84 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
85 sq = &st->st_queues[i].st_queue;
86 mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
87 sleepq_init(sq, &st->st_queues[i].st_mutex);
88 #else
89 sq = &st->st_queues[i];
90 sleepq_init(sq, &sched_mutex);
91 #endif
92 }
93 }
94
95 /*
96 * sleepq_init:
97 *
98 * Prepare a sleep queue for use.
99 */
100 void
101 sleepq_init(sleepq_t *sq, kmutex_t *mtx)
102 {
103
104 sq->sq_waiters = 0;
105 sq->sq_mutex = mtx;
106 TAILQ_INIT(&sq->sq_queue);
107 }
108
109 /*
110 * sleepq_remove:
111 *
112 * Remove an LWP from a sleep queue and wake it up. Return non-zero if
113 * the LWP is swapped out; if so the caller needs to awaken the swapper
114 * to bring the LWP into memory.
115 */
116 int
117 sleepq_remove(sleepq_t *sq, lwp_t *l)
118 {
119 struct cpu_info *ci;
120
121 KASSERT(lwp_locked(l, sq->sq_mutex));
122 KASSERT(sq->sq_waiters > 0);
123
124 sq->sq_waiters--;
125 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
126
127 #ifdef DIAGNOSTIC
128 if (sq->sq_waiters == 0)
129 KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
130 else
131 KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
132 #endif
133
134 l->l_syncobj = &sched_syncobj;
135 l->l_wchan = NULL;
136 l->l_sleepq = NULL;
137 l->l_flag &= ~LW_SINTR;
138
139 /*
140 * If not sleeping, the LWP must have been suspended. Let whoever
141 * holds it stopped set it running again.
142 */
143 if (l->l_stat != LSSLEEP) {
144 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
145 lwp_setlock(l, &sched_mutex);
146 return 0;
147 }
148
149 sched_lock(1);
150 lwp_setlock(l, &sched_mutex);
151
152 /*
153 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
154 * about to call mi_switch(), in which case it will yield.
155 *
156 * XXXSMP Will need to change for preemption.
157 */
158 ci = l->l_cpu;
159 #ifdef MULTIPROCESSOR
160 if (ci->ci_curlwp == l) {
161 #else
162 if (l == curlwp) {
163 #endif
164 l->l_stat = LSONPROC;
165 l->l_slptime = 0;
166 sched_unlock(1);
167 return 0;
168 }
169
170 /*
171 * Set it running. We'll try to get the last CPU that ran
172 * this LWP to pick it up again.
173 */
174 if (l->l_slptime > 1)
175 updatepri(l);
176 l->l_stat = LSRUN;
177 l->l_slptime = 0;
178 if ((l->l_flag & LW_INMEM) != 0) {
179 setrunqueue(l);
180 if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
181 cpu_need_resched(ci);
182 sched_unlock(1);
183 return 0;
184 }
185
186 sched_unlock(1);
187 return 1;
188 }
189
190 /*
191 * sleepq_insert:
192 *
193 * Insert an LWP into the sleep queue, optionally sorting by priority.
194 */
195 inline void
196 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
197 {
198 lwp_t *l2;
199 const int pri = lwp_eprio(l);
200
201 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
202 TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
203 if (lwp_eprio(l2) > pri) {
204 TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
205 return;
206 }
207 }
208 }
209
210 TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
211 }
212
213 /*
214 * sleepq_enqueue:
215 *
216 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
217 * queue must already be locked, and any interlock (such as the kernel
218 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
219 */
220 void
221 sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
222 syncobj_t *sobj)
223 {
224 lwp_t *l = curlwp;
225
226 KASSERT(mutex_owned(sq->sq_mutex));
227 KASSERT(l->l_stat == LSONPROC);
228 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
229
230 l->l_syncobj = sobj;
231 l->l_wchan = wchan;
232 l->l_sleepq = sq;
233 l->l_wmesg = wmesg;
234 l->l_slptime = 0;
235 l->l_priority = pri;
236 l->l_stat = LSSLEEP;
237 l->l_sleeperr = 0;
238
239 sq->sq_waiters++;
240 sleepq_insert(sq, l, sobj);
241 }
242
243 /*
244 * sleepq_block:
245 *
246 * After any intermediate step such as releasing an interlock, switch.
247 * sleepq_block() may return early under exceptional conditions, for
248 * example if the LWP's containing process is exiting.
249 */
250 int
251 sleepq_block(int timo, bool catch)
252 {
253 int error = 0, expired, sig;
254 struct proc *p;
255 lwp_t *l = curlwp;
256
257 #ifdef KTRACE
258 if (KTRPOINT(l->l_proc, KTR_CSW))
259 ktrcsw(l, 1, 0);
260 #endif
261
262 /*
263 * If sleeping interruptably, check for pending signals, exits or
264 * core dump events.
265 */
266 if (catch) {
267 l->l_flag |= LW_SINTR;
268 if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
269 /* lwp_unsleep() will release the lock */
270 lwp_unsleep(l);
271 error = EINTR;
272 goto catchit;
273 }
274 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
275 l->l_flag &= ~LW_CANCELLED;
276 /* lwp_unsleep() will release the lock */
277 lwp_unsleep(l);
278 error = EINTR;
279 goto catchit;
280 }
281 }
282
283 if (timo)
284 callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
285
286 mi_switch(l, NULL);
287 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
288
289 /*
290 * When we reach this point, the LWP and sleep queue are unlocked.
291 */
292 if (timo) {
293 /*
294 * Even if the callout appears to have fired, we need to
295 * stop it in order to synchronise with other CPUs.
296 */
297 expired = callout_expired(&l->l_tsleep_ch);
298 callout_stop(&l->l_tsleep_ch);
299 if (expired)
300 error = EWOULDBLOCK;
301 }
302
303 if (catch && error == 0) {
304 catchit:
305 p = l->l_proc;
306 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
307 error = EINTR;
308 else if ((l->l_flag & LW_PENDSIG) != 0) {
309 mutex_enter(&p->p_smutex);
310 if ((sig = issignal(l)) != 0)
311 error = sleepq_sigtoerror(l, sig);
312 mutex_exit(&p->p_smutex);
313 }
314 }
315
316 #ifdef KTRACE
317 if (KTRPOINT(l->l_proc, KTR_CSW))
318 ktrcsw(l, 0, 0);
319 #endif
320
321 KERNEL_LOCK(l->l_biglocks, l);
322 return error;
323 }
324
325 /*
326 * sleepq_wake:
327 *
328 * Wake zero or more LWPs blocked on a single wait channel.
329 */
330 lwp_t *
331 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
332 {
333 lwp_t *l, *next;
334 int swapin = 0;
335
336 KASSERT(mutex_owned(sq->sq_mutex));
337
338 for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
339 KASSERT(l->l_sleepq == sq);
340 next = TAILQ_NEXT(l, l_sleepchain);
341 if (l->l_wchan != wchan)
342 continue;
343 swapin |= sleepq_remove(sq, l);
344 if (--expected == 0)
345 break;
346 }
347
348 sleepq_unlock(sq);
349
350 /*
351 * If there are newly awakend threads that need to be swapped in,
352 * then kick the swapper into action.
353 */
354 if (swapin)
355 uvm_kick_scheduler();
356
357 return l;
358 }
359
360 /*
361 * sleepq_unsleep:
362 *
363 * Remove an LWP from its sleep queue and set it runnable again.
364 * sleepq_unsleep() is called with the LWP's mutex held, and will
365 * always release it.
366 */
367 void
368 sleepq_unsleep(lwp_t *l)
369 {
370 sleepq_t *sq = l->l_sleepq;
371 int swapin;
372
373 KASSERT(lwp_locked(l, NULL));
374 KASSERT(l->l_wchan != NULL);
375 KASSERT(l->l_mutex == sq->sq_mutex);
376
377 swapin = sleepq_remove(sq, l);
378 sleepq_unlock(sq);
379
380 if (swapin)
381 uvm_kick_scheduler();
382 }
383
384 /*
385 * sleepq_timeout:
386 *
387 * Entered via the callout(9) subsystem to time out an LWP that is on a
388 * sleep queue.
389 */
390 void
391 sleepq_timeout(void *arg)
392 {
393 lwp_t *l = arg;
394
395 /*
396 * Lock the LWP. Assuming it's still on the sleep queue, its
397 * current mutex will also be the sleep queue mutex.
398 */
399 lwp_lock(l);
400
401 if (l->l_wchan == NULL) {
402 /* Somebody beat us to it. */
403 lwp_unlock(l);
404 return;
405 }
406
407 lwp_unsleep(l);
408 }
409
410 /*
411 * sleepq_sigtoerror:
412 *
413 * Given a signal number, interpret and return an error code.
414 */
415 int
416 sleepq_sigtoerror(lwp_t *l, int sig)
417 {
418 struct proc *p = l->l_proc;
419 int error;
420
421 KASSERT(mutex_owned(&p->p_smutex));
422
423 /*
424 * If this sleep was canceled, don't let the syscall restart.
425 */
426 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
427 error = EINTR;
428 else
429 error = ERESTART;
430
431 return error;
432 }
433
434 /*
435 * sleepq_abort:
436 *
437 * After a panic or during autoconfiguration, lower the interrupt
438 * priority level to give pending interrupts a chance to run, and
439 * then return. Called if sleepq_dontsleep() returns non-zero, and
440 * always returns zero.
441 */
442 int
443 sleepq_abort(kmutex_t *mtx, int unlock)
444 {
445 extern int safepri;
446 int s;
447
448 s = splhigh();
449 splx(safepri);
450 splx(s);
451 if (mtx != NULL && unlock != 0)
452 mutex_exit(mtx);
453
454 return 0;
455 }
456
457 /*
458 * sleepq_changepri:
459 *
460 * Adjust the priority of an LWP residing on a sleepq. This method
461 * will only alter the user priority; the effective priority is
462 * assumed to have been fixed at the time of insertion into the queue.
463 */
464 void
465 sleepq_changepri(lwp_t *l, pri_t pri)
466 {
467
468 KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
469 l->l_usrpri = pri;
470 }
471
472 void
473 sleepq_lendpri(lwp_t *l, pri_t pri)
474 {
475 sleepq_t *sq = l->l_sleepq;
476 pri_t opri;
477
478 KASSERT(lwp_locked(l, sq->sq_mutex));
479
480 opri = lwp_eprio(l);
481 l->l_inheritedprio = pri;
482
483 if (lwp_eprio(l) != opri &&
484 (l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
485 TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
486 sleepq_insert(sq, l, l->l_syncobj);
487 }
488 }
489