kern_sleepq.c revision 1.72 1 /* $NetBSD: kern_sleepq.c,v 1.72 2022/06/29 22:10:43 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Sleep queue implementation, used by turnstiles and general sleep/wakeup
34 * interfaces.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.72 2022/06/29 22:10:43 riastradh Exp $");
39
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/cpu.h>
43 #include <sys/intr.h>
44 #include <sys/pool.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sched.h>
48 #include <sys/systm.h>
49 #include <sys/sleepq.h>
50 #include <sys/ktrace.h>
51
52 /*
53 * for sleepq_abort:
54 * During autoconfiguration or after a panic, a sleep will simply lower the
55 * priority briefly to allow interrupts, then return. The priority to be
56 * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
57 * maintained in the machine-dependent layers. This priority will typically
58 * be 0, or the lowest priority that is safe for use on the interrupt stack;
59 * it can be made higher to block network software interrupts after panics.
60 */
61 #ifndef IPL_SAFEPRI
62 #define IPL_SAFEPRI 0
63 #endif
64
65 static int sleepq_sigtoerror(lwp_t *, int);
66
67 /* General purpose sleep table, used by mtsleep() and condition variables. */
68 sleeptab_t sleeptab __cacheline_aligned;
69 sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
70
71 /*
72 * sleeptab_init:
73 *
74 * Initialize a sleep table.
75 */
76 void
77 sleeptab_init(sleeptab_t *st)
78 {
79 static bool again;
80 int i;
81
82 for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
83 if (!again) {
84 mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
85 IPL_SCHED);
86 }
87 sleepq_init(&st->st_queue[i]);
88 }
89 again = true;
90 }
91
92 /*
93 * sleepq_init:
94 *
95 * Prepare a sleep queue for use.
96 */
97 void
98 sleepq_init(sleepq_t *sq)
99 {
100
101 LIST_INIT(sq);
102 }
103
104 /*
105 * sleepq_remove:
106 *
107 * Remove an LWP from a sleep queue and wake it up.
108 */
109 void
110 sleepq_remove(sleepq_t *sq, lwp_t *l)
111 {
112 struct schedstate_percpu *spc;
113 struct cpu_info *ci;
114
115 KASSERT(lwp_locked(l, NULL));
116
117 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
118 KASSERT(sq != NULL);
119 LIST_REMOVE(l, l_sleepchain);
120 } else {
121 KASSERT(sq == NULL);
122 }
123
124 l->l_syncobj = &sched_syncobj;
125 l->l_wchan = NULL;
126 l->l_sleepq = NULL;
127 l->l_flag &= ~LW_SINTR;
128
129 ci = l->l_cpu;
130 spc = &ci->ci_schedstate;
131
132 /*
133 * If not sleeping, the LWP must have been suspended. Let whoever
134 * holds it stopped set it running again.
135 */
136 if (l->l_stat != LSSLEEP) {
137 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
138 lwp_setlock(l, spc->spc_lwplock);
139 return;
140 }
141
142 /*
143 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
144 * about to call mi_switch(), in which case it will yield.
145 */
146 if ((l->l_pflag & LP_RUNNING) != 0) {
147 l->l_stat = LSONPROC;
148 l->l_slptime = 0;
149 lwp_setlock(l, spc->spc_lwplock);
150 return;
151 }
152
153 /* Update sleep time delta, call the wake-up handler of scheduler */
154 l->l_slpticksum += (getticks() - l->l_slpticks);
155 sched_wakeup(l);
156
157 /* Look for a CPU to wake up */
158 l->l_cpu = sched_takecpu(l);
159 ci = l->l_cpu;
160 spc = &ci->ci_schedstate;
161
162 /*
163 * Set it running.
164 */
165 spc_lock(ci);
166 lwp_setlock(l, spc->spc_mutex);
167 sched_setrunnable(l);
168 l->l_stat = LSRUN;
169 l->l_slptime = 0;
170 sched_enqueue(l);
171 sched_resched_lwp(l, true);
172 /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
173 }
174
175 /*
176 * sleepq_insert:
177 *
178 * Insert an LWP into the sleep queue, optionally sorting by priority.
179 */
180 static void
181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
182 {
183
184 if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
185 KASSERT(sq == NULL);
186 return;
187 }
188 KASSERT(sq != NULL);
189
190 if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
191 lwp_t *l2, *l_last = NULL;
192 const pri_t pri = lwp_eprio(l);
193
194 LIST_FOREACH(l2, sq, l_sleepchain) {
195 l_last = l2;
196 if (lwp_eprio(l2) < pri) {
197 LIST_INSERT_BEFORE(l2, l, l_sleepchain);
198 return;
199 }
200 }
201 /*
202 * Ensure FIFO ordering if no waiters are of lower priority.
203 */
204 if (l_last != NULL) {
205 LIST_INSERT_AFTER(l_last, l, l_sleepchain);
206 return;
207 }
208 }
209
210 LIST_INSERT_HEAD(sq, l, l_sleepchain);
211 }
212
213 /*
214 * sleepq_enqueue:
215 *
216 * Enter an LWP into the sleep queue and prepare for sleep. The sleep
217 * queue must already be locked, and any interlock (such as the kernel
218 * lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
219 */
220 void
221 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
222 bool catch_p)
223 {
224 lwp_t *l = curlwp;
225
226 KASSERT(lwp_locked(l, NULL));
227 KASSERT(l->l_stat == LSONPROC);
228 KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
229 KASSERT((l->l_flag & LW_SINTR) == 0);
230
231 l->l_syncobj = sobj;
232 l->l_wchan = wchan;
233 l->l_sleepq = sq;
234 l->l_wmesg = wmesg;
235 l->l_slptime = 0;
236 l->l_stat = LSSLEEP;
237 if (catch_p)
238 l->l_flag |= LW_SINTR;
239
240 sleepq_insert(sq, l, sobj);
241
242 /* Save the time when thread has slept */
243 l->l_slpticks = getticks();
244 sched_slept(l);
245 }
246
247 /*
248 * sleepq_transfer:
249 *
250 * Move an LWP from one sleep queue to another. Both sleep queues
251 * must already be locked.
252 *
253 * The LWP will be updated with the new sleepq, wchan, wmesg,
254 * sobj, and mutex. The interruptible flag will also be updated.
255 */
256 void
257 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
258 const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
259 {
260
261 KASSERT(l->l_sleepq == from_sq);
262
263 LIST_REMOVE(l, l_sleepchain);
264 l->l_syncobj = sobj;
265 l->l_wchan = wchan;
266 l->l_sleepq = sq;
267 l->l_wmesg = wmesg;
268
269 if (catch_p)
270 l->l_flag = LW_SINTR | LW_CATCHINTR;
271 else
272 l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
273
274 /*
275 * This allows the transfer from one sleepq to another where
276 * it is known that they're both protected by the same lock.
277 */
278 if (mp != NULL)
279 lwp_setlock(l, mp);
280
281 sleepq_insert(sq, l, sobj);
282 }
283
284 /*
285 * sleepq_uncatch:
286 *
287 * Mark the LWP as no longer sleeping interruptibly.
288 */
289 void
290 sleepq_uncatch(lwp_t *l)
291 {
292 l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
293 }
294
295 /*
296 * sleepq_block:
297 *
298 * After any intermediate step such as releasing an interlock, switch.
299 * sleepq_block() may return early under exceptional conditions, for
300 * example if the LWP's containing process is exiting.
301 *
302 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
303 */
304 int
305 sleepq_block(int timo, bool catch_p)
306 {
307 int error = 0, sig;
308 struct proc *p;
309 lwp_t *l = curlwp;
310 bool early = false;
311 int biglocks = l->l_biglocks;
312 struct syncobj *syncobj = l->l_syncobj;
313
314 ktrcsw(1, 0, syncobj);
315
316 /*
317 * If sleeping interruptably, check for pending signals, exits or
318 * core dump events.
319 *
320 * Note the usage of LW_CATCHINTR. This expresses our intent
321 * to catch or not catch sleep interruptions, which might change
322 * while we are sleeping. It is independent from LW_SINTR because
323 * we don't want to leave LW_SINTR set when the LWP is not asleep.
324 */
325 if (catch_p) {
326 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
327 l->l_flag &= ~LW_CANCELLED;
328 error = EINTR;
329 early = true;
330 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
331 early = true;
332 l->l_flag |= LW_CATCHINTR;
333 } else
334 l->l_flag &= ~LW_CATCHINTR;
335
336 if (early) {
337 /* lwp_unsleep() will release the lock */
338 lwp_unsleep(l, true);
339 } else {
340 /*
341 * The LWP may have already been awoken if the caller
342 * dropped the sleep queue lock between sleepq_enqueue() and
343 * sleepq_block(). If that happens l_stat will be LSONPROC
344 * and mi_switch() will treat this as a preemption. No need
345 * to do anything special here.
346 */
347 if (timo) {
348 l->l_flag &= ~LW_STIMO;
349 callout_schedule(&l->l_timeout_ch, timo);
350 }
351 spc_lock(l->l_cpu);
352 mi_switch(l);
353
354 /* The LWP and sleep queue are now unlocked. */
355 if (timo) {
356 /*
357 * Even if the callout appears to have fired, we
358 * need to stop it in order to synchronise with
359 * other CPUs. It's important that we do this in
360 * this LWP's context, and not during wakeup, in
361 * order to keep the callout & its cache lines
362 * co-located on the CPU with the LWP.
363 */
364 (void)callout_halt(&l->l_timeout_ch, NULL);
365 error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
366 }
367 }
368
369 /*
370 * LW_CATCHINTR is only modified in this function OR when we
371 * are asleep (with the sleepq locked). We can therefore safely
372 * test it unlocked here as it is guaranteed to be stable by
373 * virtue of us running.
374 *
375 * We do not bother clearing it if set; that would require us
376 * to take the LWP lock, and it doesn't seem worth the hassle
377 * considering it is only meaningful here inside this function,
378 * and is set to reflect intent upon entry.
379 */
380 if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
381 p = l->l_proc;
382 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
383 error = EINTR;
384 else if ((l->l_flag & LW_PENDSIG) != 0) {
385 /*
386 * Acquiring p_lock may cause us to recurse
387 * through the sleep path and back into this
388 * routine, but is safe because LWPs sleeping
389 * on locks are non-interruptable and we will
390 * not recurse again.
391 */
392 mutex_enter(p->p_lock);
393 if (((sig = sigispending(l, 0)) != 0 &&
394 (sigprop[sig] & SA_STOP) == 0) ||
395 (sig = issignal(l)) != 0)
396 error = sleepq_sigtoerror(l, sig);
397 mutex_exit(p->p_lock);
398 }
399 }
400
401 ktrcsw(0, 0, syncobj);
402 if (__predict_false(biglocks != 0)) {
403 KERNEL_LOCK(biglocks, NULL);
404 }
405 return error;
406 }
407
408 /*
409 * sleepq_wake:
410 *
411 * Wake zero or more LWPs blocked on a single wait channel.
412 */
413 void
414 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
415 {
416 lwp_t *l, *next;
417
418 KASSERT(mutex_owned(mp));
419
420 for (l = LIST_FIRST(sq); l != NULL; l = next) {
421 KASSERT(l->l_sleepq == sq);
422 KASSERT(l->l_mutex == mp);
423 next = LIST_NEXT(l, l_sleepchain);
424 if (l->l_wchan != wchan)
425 continue;
426 sleepq_remove(sq, l);
427 if (--expected == 0)
428 break;
429 }
430
431 mutex_spin_exit(mp);
432 }
433
434 /*
435 * sleepq_unsleep:
436 *
437 * Remove an LWP from its sleep queue and set it runnable again.
438 * sleepq_unsleep() is called with the LWP's mutex held, and will
439 * release it if "unlock" is true.
440 */
441 void
442 sleepq_unsleep(lwp_t *l, bool unlock)
443 {
444 sleepq_t *sq = l->l_sleepq;
445 kmutex_t *mp = l->l_mutex;
446
447 KASSERT(lwp_locked(l, mp));
448 KASSERT(l->l_wchan != NULL);
449
450 sleepq_remove(sq, l);
451 if (unlock) {
452 mutex_spin_exit(mp);
453 }
454 }
455
456 /*
457 * sleepq_timeout:
458 *
459 * Entered via the callout(9) subsystem to time out an LWP that is on a
460 * sleep queue.
461 */
462 void
463 sleepq_timeout(void *arg)
464 {
465 lwp_t *l = arg;
466
467 /*
468 * Lock the LWP. Assuming it's still on the sleep queue, its
469 * current mutex will also be the sleep queue mutex.
470 */
471 lwp_lock(l);
472
473 if (l->l_wchan == NULL) {
474 /* Somebody beat us to it. */
475 lwp_unlock(l);
476 return;
477 }
478
479 l->l_flag |= LW_STIMO;
480 lwp_unsleep(l, true);
481 }
482
483 /*
484 * sleepq_sigtoerror:
485 *
486 * Given a signal number, interpret and return an error code.
487 */
488 static int
489 sleepq_sigtoerror(lwp_t *l, int sig)
490 {
491 struct proc *p = l->l_proc;
492 int error;
493
494 KASSERT(mutex_owned(p->p_lock));
495
496 /*
497 * If this sleep was canceled, don't let the syscall restart.
498 */
499 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
500 error = EINTR;
501 else
502 error = ERESTART;
503
504 return error;
505 }
506
507 /*
508 * sleepq_abort:
509 *
510 * After a panic or during autoconfiguration, lower the interrupt
511 * priority level to give pending interrupts a chance to run, and
512 * then return. Called if sleepq_dontsleep() returns non-zero, and
513 * always returns zero.
514 */
515 int
516 sleepq_abort(kmutex_t *mtx, int unlock)
517 {
518 int s;
519
520 s = splhigh();
521 splx(IPL_SAFEPRI);
522 splx(s);
523 if (mtx != NULL && unlock != 0)
524 mutex_exit(mtx);
525
526 return 0;
527 }
528
529 /*
530 * sleepq_reinsert:
531 *
532 * Move the position of the lwp in the sleep queue after a possible
533 * change of the lwp's effective priority.
534 */
535 static void
536 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
537 {
538
539 KASSERT(l->l_sleepq == sq);
540 if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
541 return;
542 }
543
544 /*
545 * Don't let the sleep queue become empty, even briefly.
546 * cv_signal() and cv_broadcast() inspect it without the
547 * sleep queue lock held and need to see a non-empty queue
548 * head if there are waiters.
549 */
550 if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
551 return;
552 }
553 LIST_REMOVE(l, l_sleepchain);
554 sleepq_insert(sq, l, l->l_syncobj);
555 }
556
557 /*
558 * sleepq_changepri:
559 *
560 * Adjust the priority of an LWP residing on a sleepq.
561 */
562 void
563 sleepq_changepri(lwp_t *l, pri_t pri)
564 {
565 sleepq_t *sq = l->l_sleepq;
566
567 KASSERT(lwp_locked(l, NULL));
568
569 l->l_priority = pri;
570 sleepq_reinsert(sq, l);
571 }
572
573 /*
574 * sleepq_changepri:
575 *
576 * Adjust the lended priority of an LWP residing on a sleepq.
577 */
578 void
579 sleepq_lendpri(lwp_t *l, pri_t pri)
580 {
581 sleepq_t *sq = l->l_sleepq;
582
583 KASSERT(lwp_locked(l, NULL));
584
585 l->l_inheritedprio = pri;
586 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
587 sleepq_reinsert(sq, l);
588 }
589