Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.75
      1 /*	$NetBSD: kern_sleepq.c,v 1.75 2023/09/23 18:48:04 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.75 2023/09/23 18:48:04 ad Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/kernel.h>
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/pool.h>
     46 #include <sys/proc.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 
     53 /*
     54  * for sleepq_abort:
     55  * During autoconfiguration or after a panic, a sleep will simply lower the
     56  * priority briefly to allow interrupts, then return.  The priority to be
     57  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     58  * maintained in the machine-dependent layers.  This priority will typically
     59  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     60  * it can be made higher to block network software interrupts after panics.
     61  */
     62 #ifndef	IPL_SAFEPRI
     63 #define	IPL_SAFEPRI	0
     64 #endif
     65 
     66 static int	sleepq_sigtoerror(lwp_t *, int);
     67 
     68 /* General purpose sleep table, used by mtsleep() and condition variables. */
     69 sleeptab_t	sleeptab __cacheline_aligned;
     70 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize a sleep table.
     76  */
     77 void
     78 sleeptab_init(sleeptab_t *st)
     79 {
     80 	static bool again;
     81 	int i;
     82 
     83 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84 		if (!again) {
     85 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     86 			    IPL_SCHED);
     87 		}
     88 		sleepq_init(&st->st_queue[i]);
     89 	}
     90 	again = true;
     91 }
     92 
     93 /*
     94  * sleepq_init:
     95  *
     96  *	Prepare a sleep queue for use.
     97  */
     98 void
     99 sleepq_init(sleepq_t *sq)
    100 {
    101 
    102 	LIST_INIT(sq);
    103 }
    104 
    105 /*
    106  * sleepq_remove:
    107  *
    108  *	Remove an LWP from a sleep queue and wake it up.
    109  */
    110 void
    111 sleepq_remove(sleepq_t *sq, lwp_t *l)
    112 {
    113 	struct schedstate_percpu *spc;
    114 	struct cpu_info *ci;
    115 
    116 	KASSERT(lwp_locked(l, NULL));
    117 
    118 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    119 		KASSERT(sq != NULL);
    120 		LIST_REMOVE(l, l_sleepchain);
    121 	} else {
    122 		KASSERT(sq == NULL);
    123 	}
    124 
    125 	l->l_syncobj = &sched_syncobj;
    126 	l->l_wchan = NULL;
    127 	l->l_sleepq = NULL;
    128 	l->l_flag &= ~LW_SINTR;
    129 
    130 	ci = l->l_cpu;
    131 	spc = &ci->ci_schedstate;
    132 
    133 	/*
    134 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    135 	 * holds it stopped set it running again.
    136 	 */
    137 	if (l->l_stat != LSSLEEP) {
    138 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    139 		lwp_setlock(l, spc->spc_lwplock);
    140 		return;
    141 	}
    142 
    143 	/*
    144 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    145 	 * about to call mi_switch(), in which case it will yield.
    146 	 */
    147 	if ((l->l_pflag & LP_RUNNING) != 0) {
    148 		l->l_stat = LSONPROC;
    149 		l->l_slptime = 0;
    150 		lwp_setlock(l, spc->spc_lwplock);
    151 		return;
    152 	}
    153 
    154 	/* Update sleep time delta, call the wake-up handler of scheduler */
    155 	l->l_slpticksum += (getticks() - l->l_slpticks);
    156 	sched_wakeup(l);
    157 
    158 	/* Look for a CPU to wake up */
    159 	l->l_cpu = sched_takecpu(l);
    160 	ci = l->l_cpu;
    161 	spc = &ci->ci_schedstate;
    162 
    163 	/*
    164 	 * Set it running.
    165 	 */
    166 	spc_lock(ci);
    167 	lwp_setlock(l, spc->spc_mutex);
    168 	sched_setrunnable(l);
    169 	l->l_stat = LSRUN;
    170 	l->l_slptime = 0;
    171 	sched_enqueue(l);
    172 	sched_resched_lwp(l, true);
    173 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    174 }
    175 
    176 /*
    177  * sleepq_insert:
    178  *
    179  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    180  */
    181 static void
    182 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    183 {
    184 
    185 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    186 		KASSERT(sq == NULL);
    187 		return;
    188 	}
    189 	KASSERT(sq != NULL);
    190 
    191 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    192 		lwp_t *l2, *l_last = NULL;
    193 		const pri_t pri = lwp_eprio(l);
    194 
    195 		LIST_FOREACH(l2, sq, l_sleepchain) {
    196 			l_last = l2;
    197 			if (lwp_eprio(l2) < pri) {
    198 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    199 				return;
    200 			}
    201 		}
    202 		/*
    203 		 * Ensure FIFO ordering if no waiters are of lower priority.
    204 		 */
    205 		if (l_last != NULL) {
    206 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    207 			return;
    208 		}
    209 	}
    210 
    211 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    212 }
    213 
    214 /*
    215  * sleepq_enter:
    216  *
    217  *	Prepare to block on a sleep queue, after which any interlock can be
    218  *	safely released.
    219  */
    220 void
    221 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    222 {
    223 
    224 	/*
    225 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    226 	 * Once interlocked, we can release the kernel lock.
    227 	 */
    228 	lwp_lock(l);
    229 	lwp_unlock_to(l, mp);
    230 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    231 }
    232 
    233 /*
    234  * sleepq_enqueue:
    235  *
    236  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    237  *	queue must already be locked, and any interlock (such as the kernel
    238  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    239  */
    240 void
    241 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    242     bool catch_p)
    243 {
    244 	lwp_t *l = curlwp;
    245 
    246 	KASSERT(lwp_locked(l, NULL));
    247 	KASSERT(l->l_stat == LSONPROC);
    248 	KASSERT(l->l_wchan == NULL);
    249 	KASSERT(l->l_sleepq == NULL);
    250 	KASSERT((l->l_flag & LW_SINTR) == 0);
    251 
    252 	l->l_syncobj = sobj;
    253 	l->l_wchan = wchan;
    254 	l->l_sleepq = sq;
    255 	l->l_wmesg = wmesg;
    256 	l->l_slptime = 0;
    257 	l->l_stat = LSSLEEP;
    258 	if (catch_p)
    259 		l->l_flag |= LW_SINTR;
    260 
    261 	sleepq_insert(sq, l, sobj);
    262 
    263 	/* Save the time when thread has slept */
    264 	l->l_slpticks = getticks();
    265 	sched_slept(l);
    266 }
    267 
    268 /*
    269  * sleepq_transfer:
    270  *
    271  *	Move an LWP from one sleep queue to another.  Both sleep queues
    272  *	must already be locked.
    273  *
    274  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    275  *	sobj, and mutex.  The interruptible flag will also be updated.
    276  */
    277 void
    278 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    279     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    280 {
    281 
    282 	KASSERT(l->l_sleepq == from_sq);
    283 
    284 	LIST_REMOVE(l, l_sleepchain);
    285 	l->l_syncobj = sobj;
    286 	l->l_wchan = wchan;
    287 	l->l_sleepq = sq;
    288 	l->l_wmesg = wmesg;
    289 
    290 	if (catch_p)
    291 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    292 	else
    293 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    294 
    295 	/*
    296 	 * This allows the transfer from one sleepq to another where
    297 	 * it is known that they're both protected by the same lock.
    298 	 */
    299 	if (mp != NULL)
    300 		lwp_setlock(l, mp);
    301 
    302 	sleepq_insert(sq, l, sobj);
    303 }
    304 
    305 /*
    306  * sleepq_uncatch:
    307  *
    308  *	Mark the LWP as no longer sleeping interruptibly.
    309  */
    310 void
    311 sleepq_uncatch(lwp_t *l)
    312 {
    313 	l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    314 }
    315 
    316 /*
    317  * sleepq_block:
    318  *
    319  *	After any intermediate step such as releasing an interlock, switch.
    320  * 	sleepq_block() may return early under exceptional conditions, for
    321  * 	example if the LWP's containing process is exiting.
    322  *
    323  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    324  */
    325 int
    326 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj)
    327 {
    328 	int error = 0, sig;
    329 	struct proc *p;
    330 	lwp_t *l = curlwp;
    331 	bool early = false;
    332 	int biglocks = l->l_biglocks;
    333 
    334 	ktrcsw(1, 0, syncobj);
    335 
    336 	/*
    337 	 * If sleeping interruptably, check for pending signals, exits or
    338 	 * core dump events.
    339 	 *
    340 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    341 	 * to catch or not catch sleep interruptions, which might change
    342 	 * while we are sleeping.  It is independent from LW_SINTR because
    343 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    344 	 */
    345 	if (catch_p) {
    346 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    347 			l->l_flag &= ~LW_CANCELLED;
    348 			error = EINTR;
    349 			early = true;
    350 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    351 			early = true;
    352 		l->l_flag |= LW_CATCHINTR;
    353 	} else
    354 		l->l_flag &= ~LW_CATCHINTR;
    355 
    356 	if (early) {
    357 		/* lwp_unsleep() will release the lock */
    358 		lwp_unsleep(l, true);
    359 	} else {
    360 		/*
    361 		 * The LWP may have already been awoken if the caller
    362 		 * dropped the sleep queue lock between sleepq_enqueue() and
    363 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    364 		 * and mi_switch() will treat this as a preemption.  No need
    365 		 * to do anything special here.
    366 		 */
    367 		if (timo) {
    368 			l->l_flag &= ~LW_STIMO;
    369 			callout_schedule(&l->l_timeout_ch, timo);
    370 		}
    371 		spc_lock(l->l_cpu);
    372 		mi_switch(l);
    373 
    374 		/* The LWP and sleep queue are now unlocked. */
    375 		if (timo) {
    376 			/*
    377 			 * Even if the callout appears to have fired, we
    378 			 * need to stop it in order to synchronise with
    379 			 * other CPUs.  It's important that we do this in
    380 			 * this LWP's context, and not during wakeup, in
    381 			 * order to keep the callout & its cache lines
    382 			 * co-located on the CPU with the LWP.
    383 			 */
    384 			(void)callout_halt(&l->l_timeout_ch, NULL);
    385 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    386 		}
    387 	}
    388 
    389 	/*
    390 	 * LW_CATCHINTR is only modified in this function OR when we
    391 	 * are asleep (with the sleepq locked).  We can therefore safely
    392 	 * test it unlocked here as it is guaranteed to be stable by
    393 	 * virtue of us running.
    394 	 *
    395 	 * We do not bother clearing it if set; that would require us
    396 	 * to take the LWP lock, and it doesn't seem worth the hassle
    397 	 * considering it is only meaningful here inside this function,
    398 	 * and is set to reflect intent upon entry.
    399 	 */
    400 	if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
    401 		p = l->l_proc;
    402 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    403 			error = EINTR;
    404 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    405 			/*
    406 			 * Acquiring p_lock may cause us to recurse
    407 			 * through the sleep path and back into this
    408 			 * routine, but is safe because LWPs sleeping
    409 			 * on locks are non-interruptable and we will
    410 			 * not recurse again.
    411 			 */
    412 			mutex_enter(p->p_lock);
    413 			if (((sig = sigispending(l, 0)) != 0 &&
    414 			    (sigprop[sig] & SA_STOP) == 0) ||
    415 			    (sig = issignal(l)) != 0)
    416 				error = sleepq_sigtoerror(l, sig);
    417 			mutex_exit(p->p_lock);
    418 		}
    419 	}
    420 
    421 	ktrcsw(0, 0, syncobj);
    422 	if (__predict_false(biglocks != 0)) {
    423 		KERNEL_LOCK(biglocks, NULL);
    424 	}
    425 	return error;
    426 }
    427 
    428 /*
    429  * sleepq_wake:
    430  *
    431  *	Wake zero or more LWPs blocked on a single wait channel.
    432  */
    433 void
    434 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    435 {
    436 	lwp_t *l, *next;
    437 
    438 	KASSERT(mutex_owned(mp));
    439 
    440 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    441 		KASSERT(l->l_sleepq == sq);
    442 		KASSERT(l->l_mutex == mp);
    443 		next = LIST_NEXT(l, l_sleepchain);
    444 		if (l->l_wchan != wchan)
    445 			continue;
    446 		sleepq_remove(sq, l);
    447 		if (--expected == 0)
    448 			break;
    449 	}
    450 
    451 	mutex_spin_exit(mp);
    452 }
    453 
    454 /*
    455  * sleepq_unsleep:
    456  *
    457  *	Remove an LWP from its sleep queue and set it runnable again.
    458  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    459  *	release it if "unlock" is true.
    460  */
    461 void
    462 sleepq_unsleep(lwp_t *l, bool unlock)
    463 {
    464 	sleepq_t *sq = l->l_sleepq;
    465 	kmutex_t *mp = l->l_mutex;
    466 
    467 	KASSERT(lwp_locked(l, mp));
    468 	KASSERT(l->l_wchan != NULL);
    469 
    470 	sleepq_remove(sq, l);
    471 	if (unlock) {
    472 		mutex_spin_exit(mp);
    473 	}
    474 }
    475 
    476 /*
    477  * sleepq_timeout:
    478  *
    479  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    480  *	sleep queue.
    481  */
    482 void
    483 sleepq_timeout(void *arg)
    484 {
    485 	lwp_t *l = arg;
    486 
    487 	/*
    488 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    489 	 * current mutex will also be the sleep queue mutex.
    490 	 */
    491 	lwp_lock(l);
    492 
    493 	if (l->l_wchan == NULL) {
    494 		/* Somebody beat us to it. */
    495 		lwp_unlock(l);
    496 		return;
    497 	}
    498 
    499 	l->l_flag |= LW_STIMO;
    500 	lwp_unsleep(l, true);
    501 }
    502 
    503 /*
    504  * sleepq_sigtoerror:
    505  *
    506  *	Given a signal number, interpret and return an error code.
    507  */
    508 static int
    509 sleepq_sigtoerror(lwp_t *l, int sig)
    510 {
    511 	struct proc *p = l->l_proc;
    512 	int error;
    513 
    514 	KASSERT(mutex_owned(p->p_lock));
    515 
    516 	/*
    517 	 * If this sleep was canceled, don't let the syscall restart.
    518 	 */
    519 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    520 		error = EINTR;
    521 	else
    522 		error = ERESTART;
    523 
    524 	return error;
    525 }
    526 
    527 /*
    528  * sleepq_abort:
    529  *
    530  *	After a panic or during autoconfiguration, lower the interrupt
    531  *	priority level to give pending interrupts a chance to run, and
    532  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    533  *	always returns zero.
    534  */
    535 int
    536 sleepq_abort(kmutex_t *mtx, int unlock)
    537 {
    538 	int s;
    539 
    540 	s = splhigh();
    541 	splx(IPL_SAFEPRI);
    542 	splx(s);
    543 	if (mtx != NULL && unlock != 0)
    544 		mutex_exit(mtx);
    545 
    546 	return 0;
    547 }
    548 
    549 /*
    550  * sleepq_reinsert:
    551  *
    552  *	Move the position of the lwp in the sleep queue after a possible
    553  *	change of the lwp's effective priority.
    554  */
    555 static void
    556 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    557 {
    558 
    559 	KASSERT(l->l_sleepq == sq);
    560 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    561 		return;
    562 	}
    563 
    564 	/*
    565 	 * Don't let the sleep queue become empty, even briefly.
    566 	 * cv_signal() and cv_broadcast() inspect it without the
    567 	 * sleep queue lock held and need to see a non-empty queue
    568 	 * head if there are waiters.
    569 	 */
    570 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    571 		return;
    572 	}
    573 	LIST_REMOVE(l, l_sleepchain);
    574 	sleepq_insert(sq, l, l->l_syncobj);
    575 }
    576 
    577 /*
    578  * sleepq_changepri:
    579  *
    580  *	Adjust the priority of an LWP residing on a sleepq.
    581  */
    582 void
    583 sleepq_changepri(lwp_t *l, pri_t pri)
    584 {
    585 	sleepq_t *sq = l->l_sleepq;
    586 
    587 	KASSERT(lwp_locked(l, NULL));
    588 
    589 	l->l_priority = pri;
    590 	sleepq_reinsert(sq, l);
    591 }
    592 
    593 /*
    594  * sleepq_changepri:
    595  *
    596  *	Adjust the lended priority of an LWP residing on a sleepq.
    597  */
    598 void
    599 sleepq_lendpri(lwp_t *l, pri_t pri)
    600 {
    601 	sleepq_t *sq = l->l_sleepq;
    602 
    603 	KASSERT(lwp_locked(l, NULL));
    604 
    605 	l->l_inheritedprio = pri;
    606 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    607 	sleepq_reinsert(sq, l);
    608 }
    609