Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.78
      1 /*	$NetBSD: kern_sleepq.c,v 1.78 2023/10/05 19:28:30 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.78 2023/10/05 19:28:30 ad Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/kernel.h>
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/pool.h>
     46 #include <sys/proc.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 
     53 /*
     54  * for sleepq_abort:
     55  * During autoconfiguration or after a panic, a sleep will simply lower the
     56  * priority briefly to allow interrupts, then return.  The priority to be
     57  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     58  * maintained in the machine-dependent layers.  This priority will typically
     59  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     60  * it can be made higher to block network software interrupts after panics.
     61  */
     62 #ifndef	IPL_SAFEPRI
     63 #define	IPL_SAFEPRI	0
     64 #endif
     65 
     66 static int	sleepq_sigtoerror(lwp_t *, int);
     67 
     68 /* General purpose sleep table, used by mtsleep() and condition variables. */
     69 sleeptab_t	sleeptab __cacheline_aligned;
     70 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize a sleep table.
     76  */
     77 void
     78 sleeptab_init(sleeptab_t *st)
     79 {
     80 	static bool again;
     81 	int i;
     82 
     83 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84 		if (!again) {
     85 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     86 			    IPL_SCHED);
     87 		}
     88 		sleepq_init(&st->st_queue[i]);
     89 	}
     90 	again = true;
     91 }
     92 
     93 /*
     94  * sleepq_init:
     95  *
     96  *	Prepare a sleep queue for use.
     97  */
     98 void
     99 sleepq_init(sleepq_t *sq)
    100 {
    101 
    102 	LIST_INIT(sq);
    103 }
    104 
    105 /*
    106  * sleepq_remove:
    107  *
    108  *	Remove an LWP from a sleep queue and wake it up.
    109  */
    110 void
    111 sleepq_remove(sleepq_t *sq, lwp_t *l)
    112 {
    113 	struct schedstate_percpu *spc;
    114 	struct cpu_info *ci;
    115 
    116 	KASSERT(lwp_locked(l, NULL));
    117 
    118 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    119 		KASSERT(sq != NULL);
    120 		LIST_REMOVE(l, l_sleepchain);
    121 	} else {
    122 		KASSERT(sq == NULL);
    123 	}
    124 
    125 	l->l_syncobj = &sched_syncobj;
    126 	l->l_wchan = NULL;
    127 	l->l_sleepq = NULL;
    128 	l->l_flag &= ~LW_SINTR;
    129 
    130 	ci = l->l_cpu;
    131 	spc = &ci->ci_schedstate;
    132 
    133 	/*
    134 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    135 	 * holds it stopped set it running again.
    136 	 */
    137 	if (l->l_stat != LSSLEEP) {
    138 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    139 		lwp_setlock(l, spc->spc_lwplock);
    140 		return;
    141 	}
    142 
    143 	/*
    144 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    145 	 * about to call mi_switch(), in which case it will yield.
    146 	 */
    147 	if ((l->l_pflag & LP_RUNNING) != 0) {
    148 		l->l_stat = LSONPROC;
    149 		l->l_slptime = 0;
    150 		lwp_setlock(l, spc->spc_lwplock);
    151 		return;
    152 	}
    153 
    154 	/* Update sleep time delta, call the wake-up handler of scheduler */
    155 	l->l_slpticksum += (getticks() - l->l_slpticks);
    156 	sched_wakeup(l);
    157 
    158 	/* Look for a CPU to wake up */
    159 	l->l_cpu = sched_takecpu(l);
    160 	ci = l->l_cpu;
    161 	spc = &ci->ci_schedstate;
    162 
    163 	/*
    164 	 * Set it running.
    165 	 */
    166 	spc_lock(ci);
    167 	lwp_setlock(l, spc->spc_mutex);
    168 	sched_setrunnable(l);
    169 	l->l_stat = LSRUN;
    170 	l->l_slptime = 0;
    171 	sched_enqueue(l);
    172 	sched_resched_lwp(l, true);
    173 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    174 }
    175 
    176 /*
    177  * sleepq_insert:
    178  *
    179  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    180  */
    181 static void
    182 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    183 {
    184 
    185 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    186 		KASSERT(sq == NULL);
    187 		return;
    188 	}
    189 	KASSERT(sq != NULL);
    190 
    191 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    192 		lwp_t *l2, *l_last = NULL;
    193 		const pri_t pri = lwp_eprio(l);
    194 
    195 		LIST_FOREACH(l2, sq, l_sleepchain) {
    196 			l_last = l2;
    197 			if (lwp_eprio(l2) < pri) {
    198 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    199 				return;
    200 			}
    201 		}
    202 		/*
    203 		 * Ensure FIFO ordering if no waiters are of lower priority.
    204 		 */
    205 		if (l_last != NULL) {
    206 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    207 			return;
    208 		}
    209 	}
    210 
    211 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    212 }
    213 
    214 /*
    215  * sleepq_enter:
    216  *
    217  *	Prepare to block on a sleep queue, after which any interlock can be
    218  *	safely released.
    219  */
    220 int
    221 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    222 {
    223 	int nlocks;
    224 
    225 	KASSERT((sq != NULL) == (mp != NULL));
    226 
    227 	/*
    228 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    229 	 * Once interlocked, we can release the kernel lock.
    230 	 */
    231 	lwp_lock(l);
    232 	if (mp != NULL) {
    233 		lwp_unlock_to(l, mp);
    234 	}
    235 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    236 		KERNEL_UNLOCK_ALL(NULL, NULL);
    237 	}
    238 	return nlocks;
    239 }
    240 
    241 /*
    242  * sleepq_enqueue:
    243  *
    244  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    245  *	queue must already be locked, and any interlock (such as the kernel
    246  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    247  */
    248 void
    249 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    250     bool catch_p)
    251 {
    252 	lwp_t *l = curlwp;
    253 
    254 	KASSERT(lwp_locked(l, NULL));
    255 	KASSERT(l->l_stat == LSONPROC);
    256 	KASSERT(l->l_wchan == NULL);
    257 	KASSERT(l->l_sleepq == NULL);
    258 	KASSERT((l->l_flag & LW_SINTR) == 0);
    259 
    260 	l->l_syncobj = sobj;
    261 	l->l_wchan = wchan;
    262 	l->l_sleepq = sq;
    263 	l->l_wmesg = wmesg;
    264 	l->l_slptime = 0;
    265 	l->l_stat = LSSLEEP;
    266 	if (catch_p)
    267 		l->l_flag |= LW_SINTR;
    268 
    269 	sleepq_insert(sq, l, sobj);
    270 
    271 	/* Save the time when thread has slept */
    272 	l->l_slpticks = getticks();
    273 	sched_slept(l);
    274 }
    275 
    276 /*
    277  * sleepq_transfer:
    278  *
    279  *	Move an LWP from one sleep queue to another.  Both sleep queues
    280  *	must already be locked.
    281  *
    282  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    283  *	sobj, and mutex.  The interruptible flag will also be updated.
    284  */
    285 void
    286 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    287     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    288 {
    289 
    290 	KASSERT(l->l_sleepq == from_sq);
    291 
    292 	LIST_REMOVE(l, l_sleepchain);
    293 	l->l_syncobj = sobj;
    294 	l->l_wchan = wchan;
    295 	l->l_sleepq = sq;
    296 	l->l_wmesg = wmesg;
    297 
    298 	if (catch_p)
    299 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    300 	else
    301 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    302 
    303 	/*
    304 	 * This allows the transfer from one sleepq to another where
    305 	 * it is known that they're both protected by the same lock.
    306 	 */
    307 	if (mp != NULL)
    308 		lwp_setlock(l, mp);
    309 
    310 	sleepq_insert(sq, l, sobj);
    311 }
    312 
    313 /*
    314  * sleepq_uncatch:
    315  *
    316  *	Mark the LWP as no longer sleeping interruptibly.
    317  */
    318 void
    319 sleepq_uncatch(lwp_t *l)
    320 {
    321 	l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    322 }
    323 
    324 /*
    325  * sleepq_block:
    326  *
    327  *	After any intermediate step such as releasing an interlock, switch.
    328  * 	sleepq_block() may return early under exceptional conditions, for
    329  * 	example if the LWP's containing process is exiting.
    330  *
    331  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    332  */
    333 int
    334 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    335 {
    336 	int error = 0, sig;
    337 	struct proc *p;
    338 	lwp_t *l = curlwp;
    339 	bool early = false;
    340 
    341 	ktrcsw(1, 0, syncobj);
    342 
    343 	/*
    344 	 * If sleeping interruptably, check for pending signals, exits or
    345 	 * core dump events.
    346 	 *
    347 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    348 	 * to catch or not catch sleep interruptions, which might change
    349 	 * while we are sleeping.  It is independent from LW_SINTR because
    350 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    351 	 */
    352 	if (catch_p) {
    353 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    354 			l->l_flag &= ~LW_CANCELLED;
    355 			error = EINTR;
    356 			early = true;
    357 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    358 			early = true;
    359 		l->l_flag |= LW_CATCHINTR;
    360 	} else
    361 		l->l_flag &= ~LW_CATCHINTR;
    362 
    363 	if (early) {
    364 		/* lwp_unsleep() will release the lock */
    365 		lwp_unsleep(l, true);
    366 	} else {
    367 		/*
    368 		 * The LWP may have already been awoken if the caller
    369 		 * dropped the sleep queue lock between sleepq_enqueue() and
    370 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    371 		 * and mi_switch() will treat this as a preemption.  No need
    372 		 * to do anything special here.
    373 		 */
    374 		if (timo) {
    375 			l->l_flag &= ~LW_STIMO;
    376 			callout_schedule(&l->l_timeout_ch, timo);
    377 		}
    378 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    379 		spc_lock(l->l_cpu);
    380 		mi_switch(l);
    381 
    382 		/* The LWP and sleep queue are now unlocked. */
    383 		if (timo) {
    384 			/*
    385 			 * Even if the callout appears to have fired, we
    386 			 * need to stop it in order to synchronise with
    387 			 * other CPUs.  It's important that we do this in
    388 			 * this LWP's context, and not during wakeup, in
    389 			 * order to keep the callout & its cache lines
    390 			 * co-located on the CPU with the LWP.
    391 			 */
    392 			(void)callout_halt(&l->l_timeout_ch, NULL);
    393 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    394 		}
    395 	}
    396 
    397 	/*
    398 	 * LW_CATCHINTR is only modified in this function OR when we
    399 	 * are asleep (with the sleepq locked).  We can therefore safely
    400 	 * test it unlocked here as it is guaranteed to be stable by
    401 	 * virtue of us running.
    402 	 *
    403 	 * We do not bother clearing it if set; that would require us
    404 	 * to take the LWP lock, and it doesn't seem worth the hassle
    405 	 * considering it is only meaningful here inside this function,
    406 	 * and is set to reflect intent upon entry.
    407 	 */
    408 	if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
    409 		p = l->l_proc;
    410 		if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    411 			error = EINTR;
    412 		else if ((l->l_flag & LW_PENDSIG) != 0) {
    413 			/*
    414 			 * Acquiring p_lock may cause us to recurse
    415 			 * through the sleep path and back into this
    416 			 * routine, but is safe because LWPs sleeping
    417 			 * on locks are non-interruptable and we will
    418 			 * not recurse again.
    419 			 */
    420 			mutex_enter(p->p_lock);
    421 			if (((sig = sigispending(l, 0)) != 0 &&
    422 			    (sigprop[sig] & SA_STOP) == 0) ||
    423 			    (sig = issignal(l)) != 0)
    424 				error = sleepq_sigtoerror(l, sig);
    425 			mutex_exit(p->p_lock);
    426 		}
    427 	}
    428 
    429 	ktrcsw(0, 0, syncobj);
    430 	if (__predict_false(nlocks != 0)) {
    431 		KERNEL_LOCK(nlocks, NULL);
    432 	}
    433 	return error;
    434 }
    435 
    436 /*
    437  * sleepq_wake:
    438  *
    439  *	Wake zero or more LWPs blocked on a single wait channel.
    440  */
    441 void
    442 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    443 {
    444 	lwp_t *l, *next;
    445 
    446 	KASSERT(mutex_owned(mp));
    447 
    448 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    449 		KASSERT(l->l_sleepq == sq);
    450 		KASSERT(l->l_mutex == mp);
    451 		next = LIST_NEXT(l, l_sleepchain);
    452 		if (l->l_wchan != wchan)
    453 			continue;
    454 		sleepq_remove(sq, l);
    455 		if (--expected == 0)
    456 			break;
    457 	}
    458 
    459 	mutex_spin_exit(mp);
    460 }
    461 
    462 /*
    463  * sleepq_unsleep:
    464  *
    465  *	Remove an LWP from its sleep queue and set it runnable again.
    466  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    467  *	release it if "unlock" is true.
    468  */
    469 void
    470 sleepq_unsleep(lwp_t *l, bool unlock)
    471 {
    472 	sleepq_t *sq = l->l_sleepq;
    473 	kmutex_t *mp = l->l_mutex;
    474 
    475 	KASSERT(lwp_locked(l, mp));
    476 	KASSERT(l->l_wchan != NULL);
    477 
    478 	sleepq_remove(sq, l);
    479 	if (unlock) {
    480 		mutex_spin_exit(mp);
    481 	}
    482 }
    483 
    484 /*
    485  * sleepq_timeout:
    486  *
    487  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    488  *	sleep queue.
    489  */
    490 void
    491 sleepq_timeout(void *arg)
    492 {
    493 	lwp_t *l = arg;
    494 
    495 	/*
    496 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    497 	 * current mutex will also be the sleep queue mutex.
    498 	 */
    499 	lwp_lock(l);
    500 
    501 	if (l->l_wchan == NULL) {
    502 		/* Somebody beat us to it. */
    503 		lwp_unlock(l);
    504 		return;
    505 	}
    506 
    507 	l->l_flag |= LW_STIMO;
    508 	lwp_unsleep(l, true);
    509 }
    510 
    511 /*
    512  * sleepq_sigtoerror:
    513  *
    514  *	Given a signal number, interpret and return an error code.
    515  */
    516 static int
    517 sleepq_sigtoerror(lwp_t *l, int sig)
    518 {
    519 	struct proc *p = l->l_proc;
    520 	int error;
    521 
    522 	KASSERT(mutex_owned(p->p_lock));
    523 
    524 	/*
    525 	 * If this sleep was canceled, don't let the syscall restart.
    526 	 */
    527 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    528 		error = EINTR;
    529 	else
    530 		error = ERESTART;
    531 
    532 	return error;
    533 }
    534 
    535 /*
    536  * sleepq_abort:
    537  *
    538  *	After a panic or during autoconfiguration, lower the interrupt
    539  *	priority level to give pending interrupts a chance to run, and
    540  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    541  *	always returns zero.
    542  */
    543 int
    544 sleepq_abort(kmutex_t *mtx, int unlock)
    545 {
    546 	int s;
    547 
    548 	s = splhigh();
    549 	splx(IPL_SAFEPRI);
    550 	splx(s);
    551 	if (mtx != NULL && unlock != 0)
    552 		mutex_exit(mtx);
    553 
    554 	return 0;
    555 }
    556 
    557 /*
    558  * sleepq_reinsert:
    559  *
    560  *	Move the position of the lwp in the sleep queue after a possible
    561  *	change of the lwp's effective priority.
    562  */
    563 static void
    564 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    565 {
    566 
    567 	KASSERT(l->l_sleepq == sq);
    568 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    569 		return;
    570 	}
    571 
    572 	/*
    573 	 * Don't let the sleep queue become empty, even briefly.
    574 	 * cv_signal() and cv_broadcast() inspect it without the
    575 	 * sleep queue lock held and need to see a non-empty queue
    576 	 * head if there are waiters.
    577 	 */
    578 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    579 		return;
    580 	}
    581 	LIST_REMOVE(l, l_sleepchain);
    582 	sleepq_insert(sq, l, l->l_syncobj);
    583 }
    584 
    585 /*
    586  * sleepq_changepri:
    587  *
    588  *	Adjust the priority of an LWP residing on a sleepq.
    589  */
    590 void
    591 sleepq_changepri(lwp_t *l, pri_t pri)
    592 {
    593 	sleepq_t *sq = l->l_sleepq;
    594 
    595 	KASSERT(lwp_locked(l, NULL));
    596 
    597 	l->l_priority = pri;
    598 	sleepq_reinsert(sq, l);
    599 }
    600 
    601 /*
    602  * sleepq_changepri:
    603  *
    604  *	Adjust the lended priority of an LWP residing on a sleepq.
    605  */
    606 void
    607 sleepq_lendpri(lwp_t *l, pri_t pri)
    608 {
    609 	sleepq_t *sq = l->l_sleepq;
    610 
    611 	KASSERT(lwp_locked(l, NULL));
    612 
    613 	l->l_inheritedprio = pri;
    614 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    615 	sleepq_reinsert(sq, l);
    616 }
    617