Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.82
      1 /*	$NetBSD: kern_sleepq.c,v 1.82 2023/10/08 13:23:05 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.82 2023/10/08 13:23:05 ad Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/kernel.h>
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/pool.h>
     46 #include <sys/proc.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 
     53 /*
     54  * for sleepq_abort:
     55  * During autoconfiguration or after a panic, a sleep will simply lower the
     56  * priority briefly to allow interrupts, then return.  The priority to be
     57  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     58  * maintained in the machine-dependent layers.  This priority will typically
     59  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     60  * it can be made higher to block network software interrupts after panics.
     61  */
     62 #ifndef	IPL_SAFEPRI
     63 #define	IPL_SAFEPRI	0
     64 #endif
     65 
     66 static int	sleepq_sigtoerror(lwp_t *, int);
     67 
     68 /* General purpose sleep table, used by mtsleep() and condition variables. */
     69 sleeptab_t	sleeptab __cacheline_aligned;
     70 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize a sleep table.
     76  */
     77 void
     78 sleeptab_init(sleeptab_t *st)
     79 {
     80 	static bool again;
     81 	int i;
     82 
     83 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84 		if (!again) {
     85 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     86 			    IPL_SCHED);
     87 		}
     88 		sleepq_init(&st->st_queue[i]);
     89 	}
     90 	again = true;
     91 }
     92 
     93 /*
     94  * sleepq_init:
     95  *
     96  *	Prepare a sleep queue for use.
     97  */
     98 void
     99 sleepq_init(sleepq_t *sq)
    100 {
    101 
    102 	LIST_INIT(sq);
    103 }
    104 
    105 /*
    106  * sleepq_remove:
    107  *
    108  *	Remove an LWP from a sleep queue and wake it up.  Distinguish
    109  *	between deliberate wakeups (which are a valuable information) and
    110  *	"unsleep" (an out-of-band action must be taken).
    111  *
    112  *	For wakeup, convert any interruptable wait into non-interruptable
    113  *	one before waking the LWP.  Otherwise, if only one LWP is awoken it
    114  *	could fail to do something useful with the wakeup due to an error
    115  *	return and the caller of e.g. cv_signal() may not expect this.
    116  */
    117 void
    118 sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
    119 {
    120 	struct schedstate_percpu *spc;
    121 	struct cpu_info *ci;
    122 
    123 	KASSERT(lwp_locked(l, NULL));
    124 
    125 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    126 		KASSERT(sq != NULL);
    127 		LIST_REMOVE(l, l_sleepchain);
    128 	} else {
    129 		KASSERT(sq == NULL);
    130 	}
    131 
    132 	l->l_syncobj = &sched_syncobj;
    133 	l->l_wchan = NULL;
    134 	l->l_sleepq = NULL;
    135 	l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;
    136 
    137 	ci = l->l_cpu;
    138 	spc = &ci->ci_schedstate;
    139 
    140 	/*
    141 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    142 	 * holds it stopped set it running again.
    143 	 */
    144 	if (l->l_stat != LSSLEEP) {
    145 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    146 		lwp_setlock(l, spc->spc_lwplock);
    147 		return;
    148 	}
    149 
    150 	/*
    151 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    152 	 * about to call mi_switch(), in which case it will yield.
    153 	 */
    154 	if ((l->l_pflag & LP_RUNNING) != 0) {
    155 		l->l_stat = LSONPROC;
    156 		l->l_slptime = 0;
    157 		lwp_setlock(l, spc->spc_lwplock);
    158 		return;
    159 	}
    160 
    161 	/* Update sleep time delta, call the wake-up handler of scheduler */
    162 	l->l_slpticksum += (getticks() - l->l_slpticks);
    163 	sched_wakeup(l);
    164 
    165 	/* Look for a CPU to wake up */
    166 	l->l_cpu = sched_takecpu(l);
    167 	ci = l->l_cpu;
    168 	spc = &ci->ci_schedstate;
    169 
    170 	/*
    171 	 * Set it running.
    172 	 */
    173 	spc_lock(ci);
    174 	lwp_setlock(l, spc->spc_mutex);
    175 	sched_setrunnable(l);
    176 	l->l_stat = LSRUN;
    177 	l->l_slptime = 0;
    178 	sched_enqueue(l);
    179 	sched_resched_lwp(l, true);
    180 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    181 }
    182 
    183 /*
    184  * sleepq_insert:
    185  *
    186  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    187  */
    188 static void
    189 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    190 {
    191 
    192 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    193 		KASSERT(sq == NULL);
    194 		return;
    195 	}
    196 	KASSERT(sq != NULL);
    197 
    198 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    199 		lwp_t *l2, *l_last = NULL;
    200 		const pri_t pri = lwp_eprio(l);
    201 
    202 		LIST_FOREACH(l2, sq, l_sleepchain) {
    203 			l_last = l2;
    204 			if (lwp_eprio(l2) < pri) {
    205 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    206 				return;
    207 			}
    208 		}
    209 		/*
    210 		 * Ensure FIFO ordering if no waiters are of lower priority.
    211 		 */
    212 		if (l_last != NULL) {
    213 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    214 			return;
    215 		}
    216 	}
    217 
    218 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    219 }
    220 
    221 /*
    222  * sleepq_enter:
    223  *
    224  *	Prepare to block on a sleep queue, after which any interlock can be
    225  *	safely released.
    226  */
    227 int
    228 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    229 {
    230 	int nlocks;
    231 
    232 	KASSERT((sq != NULL) == (mp != NULL));
    233 
    234 	/*
    235 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    236 	 * Once interlocked, we can release the kernel lock.
    237 	 */
    238 	lwp_lock(l);
    239 	if (mp != NULL) {
    240 		lwp_unlock_to(l, mp);
    241 	}
    242 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    243 		KERNEL_UNLOCK_ALL(NULL, NULL);
    244 	}
    245 	return nlocks;
    246 }
    247 
    248 /*
    249  * sleepq_enqueue:
    250  *
    251  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    252  *	queue must already be locked, and any interlock (such as the kernel
    253  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    254  */
    255 void
    256 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    257     bool catch_p)
    258 {
    259 	lwp_t *l = curlwp;
    260 
    261 	KASSERT(lwp_locked(l, NULL));
    262 	KASSERT(l->l_stat == LSONPROC);
    263 	KASSERT(l->l_wchan == NULL);
    264 	KASSERT(l->l_sleepq == NULL);
    265 	KASSERT((l->l_flag & LW_SINTR) == 0);
    266 
    267 	l->l_syncobj = sobj;
    268 	l->l_wchan = wchan;
    269 	l->l_sleepq = sq;
    270 	l->l_wmesg = wmesg;
    271 	l->l_slptime = 0;
    272 	l->l_stat = LSSLEEP;
    273 	if (catch_p)
    274 		l->l_flag |= LW_SINTR;
    275 
    276 	sleepq_insert(sq, l, sobj);
    277 
    278 	/* Save the time when thread has slept */
    279 	l->l_slpticks = getticks();
    280 	sched_slept(l);
    281 }
    282 
    283 /*
    284  * sleepq_transfer:
    285  *
    286  *	Move an LWP from one sleep queue to another.  Both sleep queues
    287  *	must already be locked.
    288  *
    289  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    290  *	sobj, and mutex.  The interruptible flag will also be updated.
    291  */
    292 void
    293 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    294     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    295 {
    296 
    297 	KASSERT(l->l_sleepq == from_sq);
    298 
    299 	LIST_REMOVE(l, l_sleepchain);
    300 	l->l_syncobj = sobj;
    301 	l->l_wchan = wchan;
    302 	l->l_sleepq = sq;
    303 	l->l_wmesg = wmesg;
    304 
    305 	if (catch_p)
    306 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    307 	else
    308 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    309 
    310 	/*
    311 	 * This allows the transfer from one sleepq to another where
    312 	 * it is known that they're both protected by the same lock.
    313 	 */
    314 	if (mp != NULL)
    315 		lwp_setlock(l, mp);
    316 
    317 	sleepq_insert(sq, l, sobj);
    318 }
    319 
    320 /*
    321  * sleepq_uncatch:
    322  *
    323  *	Mark the LWP as no longer sleeping interruptibly.
    324  */
    325 void
    326 sleepq_uncatch(lwp_t *l)
    327 {
    328 
    329 	l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
    330 }
    331 
    332 /*
    333  * sleepq_block:
    334  *
    335  *	After any intermediate step such as releasing an interlock, switch.
    336  * 	sleepq_block() may return early under exceptional conditions, for
    337  * 	example if the LWP's containing process is exiting.
    338  *
    339  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    340  */
    341 int
    342 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    343 {
    344 	const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG;
    345 	int error = 0, sig, flag;
    346 	struct proc *p;
    347 	lwp_t *l = curlwp;
    348 	bool early = false;
    349 
    350 	ktrcsw(1, 0, syncobj);
    351 
    352 	/*
    353 	 * If sleeping interruptably, check for pending signals, exits or
    354 	 * core dump events.
    355 	 *
    356 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    357 	 * to catch or not catch sleep interruptions, which might change
    358 	 * while we are sleeping.  It is independent from LW_SINTR because
    359 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    360 	 */
    361 	if (catch_p) {
    362 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    363 			l->l_flag &= ~LW_CANCELLED;
    364 			error = EINTR;
    365 			early = true;
    366 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    367 			early = true;
    368 		l->l_flag |= LW_CATCHINTR;
    369 	} else
    370 		l->l_flag &= ~LW_CATCHINTR;
    371 
    372 	if (early) {
    373 		/* lwp_unsleep() will release the lock */
    374 		lwp_unsleep(l, true);
    375 	} else {
    376 		/*
    377 		 * The LWP may have already been awoken if the caller
    378 		 * dropped the sleep queue lock between sleepq_enqueue() and
    379 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    380 		 * and mi_switch() will treat this as a preemption.  No need
    381 		 * to do anything special here.
    382 		 */
    383 		if (timo) {
    384 			l->l_flag &= ~LW_STIMO;
    385 			callout_schedule(&l->l_timeout_ch, timo);
    386 		}
    387 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    388 		spc_lock(l->l_cpu);
    389 		mi_switch(l);
    390 
    391 		/* The LWP and sleep queue are now unlocked. */
    392 		if (timo) {
    393 			/*
    394 			 * Even if the callout appears to have fired, we
    395 			 * need to stop it in order to synchronise with
    396 			 * other CPUs.  It's important that we do this in
    397 			 * this LWP's context, and not during wakeup, in
    398 			 * order to keep the callout & its cache lines
    399 			 * co-located on the CPU with the LWP.
    400 			 */
    401 			(void)callout_halt(&l->l_timeout_ch, NULL);
    402 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    403 		}
    404 	}
    405 
    406 	/*
    407 	 * LW_CATCHINTR is only modified in this function OR when we
    408 	 * are asleep (with the sleepq locked).  We can therefore safely
    409 	 * test it unlocked here as it is guaranteed to be stable by
    410 	 * virtue of us running.
    411 	 *
    412 	 * We do not bother clearing it if set; that would require us
    413 	 * to take the LWP lock, and it doesn't seem worth the hassle
    414 	 * considering it is only meaningful here inside this function,
    415 	 * and is set to reflect intent upon entry.
    416 	 */
    417 	flag = atomic_load_relaxed(&l->l_flag);
    418 	if (__predict_false((flag & mask) != 0)) {
    419 		if ((flag & LW_CATCHINTR) == 0 && error != 0)
    420 			/* nothing */;
    421 		else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    422 			error = EINTR;
    423 		else if ((flag & LW_PENDSIG) != 0) {
    424 			/*
    425 			 * Acquiring p_lock may cause us to recurse
    426 			 * through the sleep path and back into this
    427 			 * routine, but is safe because LWPs sleeping
    428 			 * on locks are non-interruptable and we will
    429 			 * not recurse again.
    430 			 */
    431 			p = l->l_proc;
    432 			mutex_enter(p->p_lock);
    433 			if (((sig = sigispending(l, 0)) != 0 &&
    434 			    (sigprop[sig] & SA_STOP) == 0) ||
    435 			    (sig = issignal(l)) != 0)
    436 				error = sleepq_sigtoerror(l, sig);
    437 			mutex_exit(p->p_lock);
    438 		}
    439 	}
    440 
    441 	ktrcsw(0, 0, syncobj);
    442 	if (__predict_false(nlocks != 0)) {
    443 		KERNEL_LOCK(nlocks, NULL);
    444 	}
    445 	return error;
    446 }
    447 
    448 /*
    449  * sleepq_wake:
    450  *
    451  *	Wake zero or more LWPs blocked on a single wait channel.
    452  */
    453 void
    454 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    455 {
    456 	lwp_t *l, *next;
    457 
    458 	KASSERT(mutex_owned(mp));
    459 
    460 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    461 		KASSERT(l->l_sleepq == sq);
    462 		KASSERT(l->l_mutex == mp);
    463 		next = LIST_NEXT(l, l_sleepchain);
    464 		if (l->l_wchan != wchan)
    465 			continue;
    466 		sleepq_remove(sq, l, true);
    467 		if (--expected == 0)
    468 			break;
    469 	}
    470 
    471 	mutex_spin_exit(mp);
    472 }
    473 
    474 /*
    475  * sleepq_unsleep:
    476  *
    477  *	Remove an LWP from its sleep queue and set it runnable again.
    478  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    479  *	release it if "unlock" is true.
    480  */
    481 void
    482 sleepq_unsleep(lwp_t *l, bool unlock)
    483 {
    484 	sleepq_t *sq = l->l_sleepq;
    485 	kmutex_t *mp = l->l_mutex;
    486 
    487 	KASSERT(lwp_locked(l, mp));
    488 	KASSERT(l->l_wchan != NULL);
    489 
    490 	sleepq_remove(sq, l, false);
    491 	if (unlock) {
    492 		mutex_spin_exit(mp);
    493 	}
    494 }
    495 
    496 /*
    497  * sleepq_timeout:
    498  *
    499  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    500  *	sleep queue.
    501  */
    502 void
    503 sleepq_timeout(void *arg)
    504 {
    505 	lwp_t *l = arg;
    506 
    507 	/*
    508 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    509 	 * current mutex will also be the sleep queue mutex.
    510 	 */
    511 	lwp_lock(l);
    512 
    513 	if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
    514 		/*
    515 		 * Somebody beat us to it, or the LWP is blocked in
    516 		 * callout_halt() waiting for us to finish here.  In
    517 		 * neither case should the LWP produce EWOULDBLOCK.
    518 		 */
    519 		lwp_unlock(l);
    520 		return;
    521 	}
    522 
    523 	l->l_flag |= LW_STIMO;
    524 	lwp_unsleep(l, true);
    525 }
    526 
    527 /*
    528  * sleepq_sigtoerror:
    529  *
    530  *	Given a signal number, interpret and return an error code.
    531  */
    532 static int
    533 sleepq_sigtoerror(lwp_t *l, int sig)
    534 {
    535 	struct proc *p = l->l_proc;
    536 	int error;
    537 
    538 	KASSERT(mutex_owned(p->p_lock));
    539 
    540 	/*
    541 	 * If this sleep was canceled, don't let the syscall restart.
    542 	 */
    543 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    544 		error = EINTR;
    545 	else
    546 		error = ERESTART;
    547 
    548 	return error;
    549 }
    550 
    551 /*
    552  * sleepq_abort:
    553  *
    554  *	After a panic or during autoconfiguration, lower the interrupt
    555  *	priority level to give pending interrupts a chance to run, and
    556  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    557  *	always returns zero.
    558  */
    559 int
    560 sleepq_abort(kmutex_t *mtx, int unlock)
    561 {
    562 	int s;
    563 
    564 	s = splhigh();
    565 	splx(IPL_SAFEPRI);
    566 	splx(s);
    567 	if (mtx != NULL && unlock != 0)
    568 		mutex_exit(mtx);
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * sleepq_reinsert:
    575  *
    576  *	Move the position of the lwp in the sleep queue after a possible
    577  *	change of the lwp's effective priority.
    578  */
    579 static void
    580 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    581 {
    582 
    583 	KASSERT(l->l_sleepq == sq);
    584 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    585 		return;
    586 	}
    587 
    588 	/*
    589 	 * Don't let the sleep queue become empty, even briefly.
    590 	 * cv_signal() and cv_broadcast() inspect it without the
    591 	 * sleep queue lock held and need to see a non-empty queue
    592 	 * head if there are waiters.
    593 	 */
    594 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    595 		return;
    596 	}
    597 	LIST_REMOVE(l, l_sleepchain);
    598 	sleepq_insert(sq, l, l->l_syncobj);
    599 }
    600 
    601 /*
    602  * sleepq_changepri:
    603  *
    604  *	Adjust the priority of an LWP residing on a sleepq.
    605  */
    606 void
    607 sleepq_changepri(lwp_t *l, pri_t pri)
    608 {
    609 	sleepq_t *sq = l->l_sleepq;
    610 
    611 	KASSERT(lwp_locked(l, NULL));
    612 
    613 	l->l_priority = pri;
    614 	sleepq_reinsert(sq, l);
    615 }
    616 
    617 /*
    618  * sleepq_changepri:
    619  *
    620  *	Adjust the lended priority of an LWP residing on a sleepq.
    621  */
    622 void
    623 sleepq_lendpri(lwp_t *l, pri_t pri)
    624 {
    625 	sleepq_t *sq = l->l_sleepq;
    626 
    627 	KASSERT(lwp_locked(l, NULL));
    628 
    629 	l->l_inheritedprio = pri;
    630 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    631 	sleepq_reinsert(sq, l);
    632 }
    633