Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.84
      1 /*	$NetBSD: kern_sleepq.c,v 1.84 2023/10/13 18:48:56 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.84 2023/10/13 18:48:56 ad Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/kernel.h>
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/pool.h>
     46 #include <sys/proc.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 
     53 /*
     54  * for sleepq_abort:
     55  * During autoconfiguration or after a panic, a sleep will simply lower the
     56  * priority briefly to allow interrupts, then return.  The priority to be
     57  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     58  * maintained in the machine-dependent layers.  This priority will typically
     59  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     60  * it can be made higher to block network software interrupts after panics.
     61  */
     62 #ifndef	IPL_SAFEPRI
     63 #define	IPL_SAFEPRI	0
     64 #endif
     65 
     66 static int	sleepq_sigtoerror(lwp_t *, int);
     67 
     68 /* General purpose sleep table, used by mtsleep() and condition variables. */
     69 sleeptab_t	sleeptab __cacheline_aligned;
     70 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     71 
     72 /*
     73  * sleeptab_init:
     74  *
     75  *	Initialize a sleep table.
     76  */
     77 void
     78 sleeptab_init(sleeptab_t *st)
     79 {
     80 	static bool again;
     81 	int i;
     82 
     83 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     84 		if (!again) {
     85 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     86 			    IPL_SCHED);
     87 		}
     88 		sleepq_init(&st->st_queue[i]);
     89 	}
     90 	again = true;
     91 }
     92 
     93 /*
     94  * sleepq_init:
     95  *
     96  *	Prepare a sleep queue for use.
     97  */
     98 void
     99 sleepq_init(sleepq_t *sq)
    100 {
    101 
    102 	LIST_INIT(sq);
    103 }
    104 
    105 /*
    106  * sleepq_remove:
    107  *
    108  *	Remove an LWP from a sleep queue and wake it up.  Distinguish
    109  *	between deliberate wakeups (which are a valuable information) and
    110  *	"unsleep" (an out-of-band action must be taken).
    111  *
    112  *	For wakeup, convert any interruptable wait into non-interruptable
    113  *	one before waking the LWP.  Otherwise, if only one LWP is awoken it
    114  *	could fail to do something useful with the wakeup due to an error
    115  *	return and the caller of e.g. cv_signal() may not expect this.
    116  */
    117 void
    118 sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
    119 {
    120 	struct schedstate_percpu *spc;
    121 	struct cpu_info *ci;
    122 
    123 	KASSERT(lwp_locked(l, NULL));
    124 
    125 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    126 		KASSERT(sq != NULL);
    127 		LIST_REMOVE(l, l_sleepchain);
    128 	} else {
    129 		KASSERT(sq == NULL);
    130 	}
    131 
    132 	l->l_syncobj = &sched_syncobj;
    133 	l->l_wchan = NULL;
    134 	l->l_sleepq = NULL;
    135 	l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;
    136 
    137 	ci = l->l_cpu;
    138 	spc = &ci->ci_schedstate;
    139 
    140 	/*
    141 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    142 	 * holds it stopped set it running again.
    143 	 */
    144 	if (l->l_stat != LSSLEEP) {
    145 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    146 		lwp_setlock(l, spc->spc_lwplock);
    147 		return;
    148 	}
    149 
    150 	/*
    151 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    152 	 * about to call mi_switch(), in which case it will yield.
    153 	 */
    154 	if ((l->l_pflag & LP_RUNNING) != 0) {
    155 		l->l_stat = LSONPROC;
    156 		l->l_slptime = 0;
    157 		lwp_setlock(l, spc->spc_lwplock);
    158 		return;
    159 	}
    160 
    161 	/* Update sleep time delta, call the wake-up handler of scheduler */
    162 	l->l_slpticksum += (getticks() - l->l_slpticks);
    163 	sched_wakeup(l);
    164 
    165 	/* Look for a CPU to wake up */
    166 	l->l_cpu = sched_takecpu(l);
    167 	ci = l->l_cpu;
    168 	spc = &ci->ci_schedstate;
    169 
    170 	/*
    171 	 * Set it running.
    172 	 */
    173 	spc_lock(ci);
    174 	lwp_setlock(l, spc->spc_mutex);
    175 	sched_setrunnable(l);
    176 	l->l_stat = LSRUN;
    177 	l->l_slptime = 0;
    178 	sched_enqueue(l);
    179 	sched_resched_lwp(l, true);
    180 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    181 }
    182 
    183 /*
    184  * sleepq_insert:
    185  *
    186  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    187  */
    188 static void
    189 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    190 {
    191 
    192 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    193 		KASSERT(sq == NULL);
    194 		return;
    195 	}
    196 	KASSERT(sq != NULL);
    197 
    198 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    199 		lwp_t *l2, *l_last = NULL;
    200 		const pri_t pri = lwp_eprio(l);
    201 
    202 		LIST_FOREACH(l2, sq, l_sleepchain) {
    203 			l_last = l2;
    204 			if (lwp_eprio(l2) < pri) {
    205 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    206 				return;
    207 			}
    208 		}
    209 		/*
    210 		 * Ensure FIFO ordering if no waiters are of lower priority.
    211 		 */
    212 		if (l_last != NULL) {
    213 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    214 			return;
    215 		}
    216 	}
    217 
    218 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    219 }
    220 
    221 /*
    222  * sleepq_enter:
    223  *
    224  *	Prepare to block on a sleep queue, after which any interlock can be
    225  *	safely released.
    226  */
    227 int
    228 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    229 {
    230 	int nlocks;
    231 
    232 	KASSERT((sq != NULL) == (mp != NULL));
    233 
    234 	/*
    235 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    236 	 * Once interlocked, we can release the kernel lock.
    237 	 */
    238 	lwp_lock(l);
    239 	if (mp != NULL) {
    240 		lwp_unlock_to(l, mp);
    241 	}
    242 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    243 		KERNEL_UNLOCK_ALL(NULL, NULL);
    244 	}
    245 	return nlocks;
    246 }
    247 
    248 /*
    249  * sleepq_enqueue:
    250  *
    251  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    252  *	queue must already be locked, and any interlock (such as the kernel
    253  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    254  */
    255 void
    256 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    257     bool catch_p)
    258 {
    259 	lwp_t *l = curlwp;
    260 
    261 	KASSERT(lwp_locked(l, NULL));
    262 	KASSERT(l->l_stat == LSONPROC);
    263 	KASSERT(l->l_wchan == NULL);
    264 	KASSERT(l->l_sleepq == NULL);
    265 	KASSERT((l->l_flag & LW_SINTR) == 0);
    266 
    267 	l->l_syncobj = sobj;
    268 	l->l_wchan = wchan;
    269 	l->l_sleepq = sq;
    270 	l->l_wmesg = wmesg;
    271 	l->l_slptime = 0;
    272 	l->l_stat = LSSLEEP;
    273 	if (catch_p)
    274 		l->l_flag |= LW_SINTR;
    275 
    276 	sleepq_insert(sq, l, sobj);
    277 
    278 	/* Save the time when thread has slept */
    279 	l->l_slpticks = getticks();
    280 	sched_slept(l);
    281 }
    282 
    283 /*
    284  * sleepq_transfer:
    285  *
    286  *	Move an LWP from one sleep queue to another.  Both sleep queues
    287  *	must already be locked.
    288  *
    289  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    290  *	sobj, and mutex.  The interruptible flag will also be updated.
    291  */
    292 void
    293 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    294     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    295 {
    296 
    297 	KASSERT(l->l_sleepq == from_sq);
    298 
    299 	LIST_REMOVE(l, l_sleepchain);
    300 	l->l_syncobj = sobj;
    301 	l->l_wchan = wchan;
    302 	l->l_sleepq = sq;
    303 	l->l_wmesg = wmesg;
    304 
    305 	if (catch_p)
    306 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    307 	else
    308 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    309 
    310 	/*
    311 	 * This allows the transfer from one sleepq to another where
    312 	 * it is known that they're both protected by the same lock.
    313 	 */
    314 	if (mp != NULL)
    315 		lwp_setlock(l, mp);
    316 
    317 	sleepq_insert(sq, l, sobj);
    318 }
    319 
    320 /*
    321  * sleepq_uncatch:
    322  *
    323  *	Mark the LWP as no longer sleeping interruptibly.
    324  */
    325 void
    326 sleepq_uncatch(lwp_t *l)
    327 {
    328 
    329 	l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
    330 }
    331 
    332 /*
    333  * sleepq_block:
    334  *
    335  *	After any intermediate step such as releasing an interlock, switch.
    336  * 	sleepq_block() may return early under exceptional conditions, for
    337  * 	example if the LWP's containing process is exiting.
    338  *
    339  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    340  */
    341 int
    342 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    343 {
    344 	const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG|LW_RESTART;
    345 	int error = 0, sig, flag;
    346 	struct proc *p;
    347 	lwp_t *l = curlwp;
    348 	bool early = false;
    349 
    350 	ktrcsw(1, 0, syncobj);
    351 
    352 	/*
    353 	 * If sleeping interruptably, check for pending signals, exits or
    354 	 * core dump events.
    355 	 *
    356 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    357 	 * to catch or not catch sleep interruptions, which might change
    358 	 * while we are sleeping.  It is independent from LW_SINTR because
    359 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    360 	 */
    361 	flag = l->l_flag;
    362 	if (catch_p) {
    363 		if ((flag & mask) != 0) {
    364 			if ((flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    365 				l->l_flag = flag & ~LW_CANCELLED;
    366 				error = EINTR;
    367 				early = true;
    368 			} else if ((flag & LW_PENDSIG) != 0 &&
    369 			    sigispending(l, 0))
    370 				early = true;
    371 		}
    372 		l->l_flag = (flag | LW_CATCHINTR) & ~LW_RESTART;
    373 	} else
    374 		l->l_flag = flag & ~(LW_CATCHINTR | LW_RESTART);
    375 
    376 	if (early) {
    377 		/* lwp_unsleep() will release the lock */
    378 		lwp_unsleep(l, true);
    379 	} else {
    380 		/*
    381 		 * The LWP may have already been awoken if the caller
    382 		 * dropped the sleep queue lock between sleepq_enqueue() and
    383 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    384 		 * and mi_switch() will treat this as a preemption.  No need
    385 		 * to do anything special here.
    386 		 */
    387 		if (timo) {
    388 			l->l_flag &= ~LW_STIMO;
    389 			callout_schedule(&l->l_timeout_ch, timo);
    390 		}
    391 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    392 		spc_lock(l->l_cpu);
    393 		mi_switch(l);
    394 
    395 		/* The LWP and sleep queue are now unlocked. */
    396 		if (timo) {
    397 			/*
    398 			 * Even if the callout appears to have fired, we
    399 			 * need to stop it in order to synchronise with
    400 			 * other CPUs.  It's important that we do this in
    401 			 * this LWP's context, and not during wakeup, in
    402 			 * order to keep the callout & its cache lines
    403 			 * co-located on the CPU with the LWP.
    404 			 */
    405 			(void)callout_halt(&l->l_timeout_ch, NULL);
    406 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    407 		}
    408 	}
    409 
    410 	/*
    411 	 * LW_CATCHINTR is only modified in this function OR when we
    412 	 * are asleep (with the sleepq locked).  We can therefore safely
    413 	 * test it unlocked here as it is guaranteed to be stable by
    414 	 * virtue of us running.
    415 	 *
    416 	 * We do not bother clearing it if set; that would require us
    417 	 * to take the LWP lock, and it doesn't seem worth the hassle
    418 	 * considering it is only meaningful here inside this function,
    419 	 * and is set to reflect intent upon entry.
    420 	 */
    421 	flag = atomic_load_relaxed(&l->l_flag);
    422 	if (__predict_false((flag & mask) != 0)) {
    423 		if ((flag & LW_CATCHINTR) == 0 || error != 0)
    424 			/* nothing */;
    425 		else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    426 			error = EINTR;
    427 		else if ((flag & LW_PENDSIG) != 0) {
    428 			/*
    429 			 * Acquiring p_lock may cause us to recurse
    430 			 * through the sleep path and back into this
    431 			 * routine, but is safe because LWPs sleeping
    432 			 * on locks are non-interruptable and we will
    433 			 * not recurse again.
    434 			 */
    435 			p = l->l_proc;
    436 			mutex_enter(p->p_lock);
    437 			if (((sig = sigispending(l, 0)) != 0 &&
    438 			    (sigprop[sig] & SA_STOP) == 0) ||
    439 			    (sig = issignal(l)) != 0)
    440 				error = sleepq_sigtoerror(l, sig);
    441 			mutex_exit(p->p_lock);
    442 		} else if ((flag & LW_RESTART) != 0)
    443 			error = ERESTART;
    444 	}
    445 
    446 	ktrcsw(0, 0, syncobj);
    447 	if (__predict_false(nlocks != 0)) {
    448 		KERNEL_LOCK(nlocks, NULL);
    449 	}
    450 	return error;
    451 }
    452 
    453 /*
    454  * sleepq_wake:
    455  *
    456  *	Wake zero or more LWPs blocked on a single wait channel.
    457  */
    458 void
    459 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    460 {
    461 	lwp_t *l, *next;
    462 
    463 	KASSERT(mutex_owned(mp));
    464 
    465 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    466 		KASSERT(l->l_sleepq == sq);
    467 		KASSERT(l->l_mutex == mp);
    468 		next = LIST_NEXT(l, l_sleepchain);
    469 		if (l->l_wchan != wchan)
    470 			continue;
    471 		sleepq_remove(sq, l, true);
    472 		if (--expected == 0)
    473 			break;
    474 	}
    475 
    476 	mutex_spin_exit(mp);
    477 }
    478 
    479 /*
    480  * sleepq_unsleep:
    481  *
    482  *	Remove an LWP from its sleep queue and set it runnable again.
    483  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    484  *	release it if "unlock" is true.
    485  */
    486 void
    487 sleepq_unsleep(lwp_t *l, bool unlock)
    488 {
    489 	sleepq_t *sq = l->l_sleepq;
    490 	kmutex_t *mp = l->l_mutex;
    491 
    492 	KASSERT(lwp_locked(l, mp));
    493 	KASSERT(l->l_wchan != NULL);
    494 
    495 	sleepq_remove(sq, l, false);
    496 	if (unlock) {
    497 		mutex_spin_exit(mp);
    498 	}
    499 }
    500 
    501 /*
    502  * sleepq_timeout:
    503  *
    504  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    505  *	sleep queue.
    506  */
    507 void
    508 sleepq_timeout(void *arg)
    509 {
    510 	lwp_t *l = arg;
    511 
    512 	/*
    513 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    514 	 * current mutex will also be the sleep queue mutex.
    515 	 */
    516 	lwp_lock(l);
    517 
    518 	if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
    519 		/*
    520 		 * Somebody beat us to it, or the LWP is blocked in
    521 		 * callout_halt() waiting for us to finish here.  In
    522 		 * neither case should the LWP produce EWOULDBLOCK.
    523 		 */
    524 		lwp_unlock(l);
    525 		return;
    526 	}
    527 
    528 	l->l_flag |= LW_STIMO;
    529 	lwp_unsleep(l, true);
    530 }
    531 
    532 /*
    533  * sleepq_sigtoerror:
    534  *
    535  *	Given a signal number, interpret and return an error code.
    536  */
    537 static int
    538 sleepq_sigtoerror(lwp_t *l, int sig)
    539 {
    540 	struct proc *p = l->l_proc;
    541 	int error;
    542 
    543 	KASSERT(mutex_owned(p->p_lock));
    544 
    545 	/*
    546 	 * If this sleep was canceled, don't let the syscall restart.
    547 	 */
    548 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    549 		error = EINTR;
    550 	else
    551 		error = ERESTART;
    552 
    553 	return error;
    554 }
    555 
    556 /*
    557  * sleepq_abort:
    558  *
    559  *	After a panic or during autoconfiguration, lower the interrupt
    560  *	priority level to give pending interrupts a chance to run, and
    561  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    562  *	always returns zero.
    563  */
    564 int
    565 sleepq_abort(kmutex_t *mtx, int unlock)
    566 {
    567 	int s;
    568 
    569 	s = splhigh();
    570 	splx(IPL_SAFEPRI);
    571 	splx(s);
    572 	if (mtx != NULL && unlock != 0)
    573 		mutex_exit(mtx);
    574 
    575 	return 0;
    576 }
    577 
    578 /*
    579  * sleepq_reinsert:
    580  *
    581  *	Move the position of the lwp in the sleep queue after a possible
    582  *	change of the lwp's effective priority.
    583  */
    584 static void
    585 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    586 {
    587 
    588 	KASSERT(l->l_sleepq == sq);
    589 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    590 		return;
    591 	}
    592 
    593 	/*
    594 	 * Don't let the sleep queue become empty, even briefly.
    595 	 * cv_signal() and cv_broadcast() inspect it without the
    596 	 * sleep queue lock held and need to see a non-empty queue
    597 	 * head if there are waiters.
    598 	 */
    599 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    600 		return;
    601 	}
    602 	LIST_REMOVE(l, l_sleepchain);
    603 	sleepq_insert(sq, l, l->l_syncobj);
    604 }
    605 
    606 /*
    607  * sleepq_changepri:
    608  *
    609  *	Adjust the priority of an LWP residing on a sleepq.
    610  */
    611 void
    612 sleepq_changepri(lwp_t *l, pri_t pri)
    613 {
    614 	sleepq_t *sq = l->l_sleepq;
    615 
    616 	KASSERT(lwp_locked(l, NULL));
    617 
    618 	l->l_priority = pri;
    619 	sleepq_reinsert(sq, l);
    620 }
    621 
    622 /*
    623  * sleepq_changepri:
    624  *
    625  *	Adjust the lended priority of an LWP residing on a sleepq.
    626  */
    627 void
    628 sleepq_lendpri(lwp_t *l, pri_t pri)
    629 {
    630 	sleepq_t *sq = l->l_sleepq;
    631 
    632 	KASSERT(lwp_locked(l, NULL));
    633 
    634 	l->l_inheritedprio = pri;
    635 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    636 	sleepq_reinsert(sq, l);
    637 }
    638