Home | History | Annotate | Line # | Download | only in kern
kern_sleepq.c revision 1.85
      1 /*	$NetBSD: kern_sleepq.c,v 1.85 2023/10/15 10:27:11 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.85 2023/10/15 10:27:11 riastradh Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/kernel.h>
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/pool.h>
     46 #include <sys/proc.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/sched.h>
     49 #include <sys/systm.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/ktrace.h>
     52 #include <sys/syncobj.h>
     53 
     54 /*
     55  * for sleepq_abort:
     56  * During autoconfiguration or after a panic, a sleep will simply lower the
     57  * priority briefly to allow interrupts, then return.  The priority to be
     58  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     59  * maintained in the machine-dependent layers.  This priority will typically
     60  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     61  * it can be made higher to block network software interrupts after panics.
     62  */
     63 #ifndef	IPL_SAFEPRI
     64 #define	IPL_SAFEPRI	0
     65 #endif
     66 
     67 static int	sleepq_sigtoerror(lwp_t *, int);
     68 
     69 /* General purpose sleep table, used by mtsleep() and condition variables. */
     70 sleeptab_t	sleeptab __cacheline_aligned;
     71 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     72 
     73 /*
     74  * sleeptab_init:
     75  *
     76  *	Initialize a sleep table.
     77  */
     78 void
     79 sleeptab_init(sleeptab_t *st)
     80 {
     81 	static bool again;
     82 	int i;
     83 
     84 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     85 		if (!again) {
     86 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     87 			    IPL_SCHED);
     88 		}
     89 		sleepq_init(&st->st_queue[i]);
     90 	}
     91 	again = true;
     92 }
     93 
     94 /*
     95  * sleepq_init:
     96  *
     97  *	Prepare a sleep queue for use.
     98  */
     99 void
    100 sleepq_init(sleepq_t *sq)
    101 {
    102 
    103 	LIST_INIT(sq);
    104 }
    105 
    106 /*
    107  * sleepq_remove:
    108  *
    109  *	Remove an LWP from a sleep queue and wake it up.  Distinguish
    110  *	between deliberate wakeups (which are a valuable information) and
    111  *	"unsleep" (an out-of-band action must be taken).
    112  *
    113  *	For wakeup, convert any interruptable wait into non-interruptable
    114  *	one before waking the LWP.  Otherwise, if only one LWP is awoken it
    115  *	could fail to do something useful with the wakeup due to an error
    116  *	return and the caller of e.g. cv_signal() may not expect this.
    117  */
    118 void
    119 sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
    120 {
    121 	struct schedstate_percpu *spc;
    122 	struct cpu_info *ci;
    123 
    124 	KASSERT(lwp_locked(l, NULL));
    125 
    126 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    127 		KASSERT(sq != NULL);
    128 		LIST_REMOVE(l, l_sleepchain);
    129 	} else {
    130 		KASSERT(sq == NULL);
    131 	}
    132 
    133 	l->l_syncobj = &sched_syncobj;
    134 	l->l_wchan = NULL;
    135 	l->l_sleepq = NULL;
    136 	l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;
    137 
    138 	ci = l->l_cpu;
    139 	spc = &ci->ci_schedstate;
    140 
    141 	/*
    142 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    143 	 * holds it stopped set it running again.
    144 	 */
    145 	if (l->l_stat != LSSLEEP) {
    146 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    147 		lwp_setlock(l, spc->spc_lwplock);
    148 		return;
    149 	}
    150 
    151 	/*
    152 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    153 	 * about to call mi_switch(), in which case it will yield.
    154 	 */
    155 	if ((l->l_pflag & LP_RUNNING) != 0) {
    156 		l->l_stat = LSONPROC;
    157 		l->l_slptime = 0;
    158 		lwp_setlock(l, spc->spc_lwplock);
    159 		return;
    160 	}
    161 
    162 	/* Update sleep time delta, call the wake-up handler of scheduler */
    163 	l->l_slpticksum += (getticks() - l->l_slpticks);
    164 	sched_wakeup(l);
    165 
    166 	/* Look for a CPU to wake up */
    167 	l->l_cpu = sched_takecpu(l);
    168 	ci = l->l_cpu;
    169 	spc = &ci->ci_schedstate;
    170 
    171 	/*
    172 	 * Set it running.
    173 	 */
    174 	spc_lock(ci);
    175 	lwp_setlock(l, spc->spc_mutex);
    176 	sched_setrunnable(l);
    177 	l->l_stat = LSRUN;
    178 	l->l_slptime = 0;
    179 	sched_enqueue(l);
    180 	sched_resched_lwp(l, true);
    181 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    182 }
    183 
    184 /*
    185  * sleepq_insert:
    186  *
    187  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    188  */
    189 static void
    190 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    191 {
    192 
    193 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    194 		KASSERT(sq == NULL);
    195 		return;
    196 	}
    197 	KASSERT(sq != NULL);
    198 
    199 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    200 		lwp_t *l2, *l_last = NULL;
    201 		const pri_t pri = lwp_eprio(l);
    202 
    203 		LIST_FOREACH(l2, sq, l_sleepchain) {
    204 			l_last = l2;
    205 			if (lwp_eprio(l2) < pri) {
    206 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    207 				return;
    208 			}
    209 		}
    210 		/*
    211 		 * Ensure FIFO ordering if no waiters are of lower priority.
    212 		 */
    213 		if (l_last != NULL) {
    214 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    215 			return;
    216 		}
    217 	}
    218 
    219 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    220 }
    221 
    222 /*
    223  * sleepq_enter:
    224  *
    225  *	Prepare to block on a sleep queue, after which any interlock can be
    226  *	safely released.
    227  */
    228 int
    229 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    230 {
    231 	int nlocks;
    232 
    233 	KASSERT((sq != NULL) == (mp != NULL));
    234 
    235 	/*
    236 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    237 	 * Once interlocked, we can release the kernel lock.
    238 	 */
    239 	lwp_lock(l);
    240 	if (mp != NULL) {
    241 		lwp_unlock_to(l, mp);
    242 	}
    243 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    244 		KERNEL_UNLOCK_ALL(NULL, NULL);
    245 	}
    246 	return nlocks;
    247 }
    248 
    249 /*
    250  * sleepq_enqueue:
    251  *
    252  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    253  *	queue must already be locked, and any interlock (such as the kernel
    254  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    255  */
    256 void
    257 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    258     bool catch_p)
    259 {
    260 	lwp_t *l = curlwp;
    261 
    262 	KASSERT(lwp_locked(l, NULL));
    263 	KASSERT(l->l_stat == LSONPROC);
    264 	KASSERT(l->l_wchan == NULL);
    265 	KASSERT(l->l_sleepq == NULL);
    266 	KASSERT((l->l_flag & LW_SINTR) == 0);
    267 
    268 	l->l_syncobj = sobj;
    269 	l->l_wchan = wchan;
    270 	l->l_sleepq = sq;
    271 	l->l_wmesg = wmesg;
    272 	l->l_slptime = 0;
    273 	l->l_stat = LSSLEEP;
    274 	if (catch_p)
    275 		l->l_flag |= LW_SINTR;
    276 
    277 	sleepq_insert(sq, l, sobj);
    278 
    279 	/* Save the time when thread has slept */
    280 	l->l_slpticks = getticks();
    281 	sched_slept(l);
    282 }
    283 
    284 /*
    285  * sleepq_transfer:
    286  *
    287  *	Move an LWP from one sleep queue to another.  Both sleep queues
    288  *	must already be locked.
    289  *
    290  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    291  *	sobj, and mutex.  The interruptible flag will also be updated.
    292  */
    293 void
    294 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    295     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    296 {
    297 
    298 	KASSERT(l->l_sleepq == from_sq);
    299 
    300 	LIST_REMOVE(l, l_sleepchain);
    301 	l->l_syncobj = sobj;
    302 	l->l_wchan = wchan;
    303 	l->l_sleepq = sq;
    304 	l->l_wmesg = wmesg;
    305 
    306 	if (catch_p)
    307 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    308 	else
    309 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    310 
    311 	/*
    312 	 * This allows the transfer from one sleepq to another where
    313 	 * it is known that they're both protected by the same lock.
    314 	 */
    315 	if (mp != NULL)
    316 		lwp_setlock(l, mp);
    317 
    318 	sleepq_insert(sq, l, sobj);
    319 }
    320 
    321 /*
    322  * sleepq_uncatch:
    323  *
    324  *	Mark the LWP as no longer sleeping interruptibly.
    325  */
    326 void
    327 sleepq_uncatch(lwp_t *l)
    328 {
    329 
    330 	l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
    331 }
    332 
    333 /*
    334  * sleepq_block:
    335  *
    336  *	After any intermediate step such as releasing an interlock, switch.
    337  * 	sleepq_block() may return early under exceptional conditions, for
    338  * 	example if the LWP's containing process is exiting.
    339  *
    340  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    341  */
    342 int
    343 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    344 {
    345 	const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG|LW_RESTART;
    346 	int error = 0, sig, flag;
    347 	struct proc *p;
    348 	lwp_t *l = curlwp;
    349 	bool early = false;
    350 
    351 	ktrcsw(1, 0, syncobj);
    352 
    353 	/*
    354 	 * If sleeping interruptably, check for pending signals, exits or
    355 	 * core dump events.
    356 	 *
    357 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    358 	 * to catch or not catch sleep interruptions, which might change
    359 	 * while we are sleeping.  It is independent from LW_SINTR because
    360 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    361 	 */
    362 	flag = l->l_flag;
    363 	if (catch_p) {
    364 		if ((flag & mask) != 0) {
    365 			if ((flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    366 				l->l_flag = flag & ~LW_CANCELLED;
    367 				error = EINTR;
    368 				early = true;
    369 			} else if ((flag & LW_PENDSIG) != 0 &&
    370 			    sigispending(l, 0))
    371 				early = true;
    372 		}
    373 		l->l_flag = (flag | LW_CATCHINTR) & ~LW_RESTART;
    374 	} else
    375 		l->l_flag = flag & ~(LW_CATCHINTR | LW_RESTART);
    376 
    377 	if (early) {
    378 		/* lwp_unsleep() will release the lock */
    379 		lwp_unsleep(l, true);
    380 	} else {
    381 		/*
    382 		 * The LWP may have already been awoken if the caller
    383 		 * dropped the sleep queue lock between sleepq_enqueue() and
    384 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    385 		 * and mi_switch() will treat this as a preemption.  No need
    386 		 * to do anything special here.
    387 		 */
    388 		if (timo) {
    389 			l->l_flag &= ~LW_STIMO;
    390 			callout_schedule(&l->l_timeout_ch, timo);
    391 		}
    392 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    393 		spc_lock(l->l_cpu);
    394 		mi_switch(l);
    395 
    396 		/* The LWP and sleep queue are now unlocked. */
    397 		if (timo) {
    398 			/*
    399 			 * Even if the callout appears to have fired, we
    400 			 * need to stop it in order to synchronise with
    401 			 * other CPUs.  It's important that we do this in
    402 			 * this LWP's context, and not during wakeup, in
    403 			 * order to keep the callout & its cache lines
    404 			 * co-located on the CPU with the LWP.
    405 			 */
    406 			(void)callout_halt(&l->l_timeout_ch, NULL);
    407 			error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
    408 		}
    409 	}
    410 
    411 	/*
    412 	 * LW_CATCHINTR is only modified in this function OR when we
    413 	 * are asleep (with the sleepq locked).  We can therefore safely
    414 	 * test it unlocked here as it is guaranteed to be stable by
    415 	 * virtue of us running.
    416 	 *
    417 	 * We do not bother clearing it if set; that would require us
    418 	 * to take the LWP lock, and it doesn't seem worth the hassle
    419 	 * considering it is only meaningful here inside this function,
    420 	 * and is set to reflect intent upon entry.
    421 	 */
    422 	flag = atomic_load_relaxed(&l->l_flag);
    423 	if (__predict_false((flag & mask) != 0)) {
    424 		if ((flag & LW_CATCHINTR) == 0 || error != 0)
    425 			/* nothing */;
    426 		else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    427 			error = EINTR;
    428 		else if ((flag & LW_PENDSIG) != 0) {
    429 			/*
    430 			 * Acquiring p_lock may cause us to recurse
    431 			 * through the sleep path and back into this
    432 			 * routine, but is safe because LWPs sleeping
    433 			 * on locks are non-interruptable and we will
    434 			 * not recurse again.
    435 			 */
    436 			p = l->l_proc;
    437 			mutex_enter(p->p_lock);
    438 			if (((sig = sigispending(l, 0)) != 0 &&
    439 			    (sigprop[sig] & SA_STOP) == 0) ||
    440 			    (sig = issignal(l)) != 0)
    441 				error = sleepq_sigtoerror(l, sig);
    442 			mutex_exit(p->p_lock);
    443 		} else if ((flag & LW_RESTART) != 0)
    444 			error = ERESTART;
    445 	}
    446 
    447 	ktrcsw(0, 0, syncobj);
    448 	if (__predict_false(nlocks != 0)) {
    449 		KERNEL_LOCK(nlocks, NULL);
    450 	}
    451 	return error;
    452 }
    453 
    454 /*
    455  * sleepq_wake:
    456  *
    457  *	Wake zero or more LWPs blocked on a single wait channel.
    458  */
    459 void
    460 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    461 {
    462 	lwp_t *l, *next;
    463 
    464 	KASSERT(mutex_owned(mp));
    465 
    466 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    467 		KASSERT(l->l_sleepq == sq);
    468 		KASSERT(l->l_mutex == mp);
    469 		next = LIST_NEXT(l, l_sleepchain);
    470 		if (l->l_wchan != wchan)
    471 			continue;
    472 		sleepq_remove(sq, l, true);
    473 		if (--expected == 0)
    474 			break;
    475 	}
    476 
    477 	mutex_spin_exit(mp);
    478 }
    479 
    480 /*
    481  * sleepq_unsleep:
    482  *
    483  *	Remove an LWP from its sleep queue and set it runnable again.
    484  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    485  *	release it if "unlock" is true.
    486  */
    487 void
    488 sleepq_unsleep(lwp_t *l, bool unlock)
    489 {
    490 	sleepq_t *sq = l->l_sleepq;
    491 	kmutex_t *mp = l->l_mutex;
    492 
    493 	KASSERT(lwp_locked(l, mp));
    494 	KASSERT(l->l_wchan != NULL);
    495 
    496 	sleepq_remove(sq, l, false);
    497 	if (unlock) {
    498 		mutex_spin_exit(mp);
    499 	}
    500 }
    501 
    502 /*
    503  * sleepq_timeout:
    504  *
    505  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    506  *	sleep queue.
    507  */
    508 void
    509 sleepq_timeout(void *arg)
    510 {
    511 	lwp_t *l = arg;
    512 
    513 	/*
    514 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    515 	 * current mutex will also be the sleep queue mutex.
    516 	 */
    517 	lwp_lock(l);
    518 
    519 	if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
    520 		/*
    521 		 * Somebody beat us to it, or the LWP is blocked in
    522 		 * callout_halt() waiting for us to finish here.  In
    523 		 * neither case should the LWP produce EWOULDBLOCK.
    524 		 */
    525 		lwp_unlock(l);
    526 		return;
    527 	}
    528 
    529 	l->l_flag |= LW_STIMO;
    530 	lwp_unsleep(l, true);
    531 }
    532 
    533 /*
    534  * sleepq_sigtoerror:
    535  *
    536  *	Given a signal number, interpret and return an error code.
    537  */
    538 static int
    539 sleepq_sigtoerror(lwp_t *l, int sig)
    540 {
    541 	struct proc *p = l->l_proc;
    542 	int error;
    543 
    544 	KASSERT(mutex_owned(p->p_lock));
    545 
    546 	/*
    547 	 * If this sleep was canceled, don't let the syscall restart.
    548 	 */
    549 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    550 		error = EINTR;
    551 	else
    552 		error = ERESTART;
    553 
    554 	return error;
    555 }
    556 
    557 /*
    558  * sleepq_abort:
    559  *
    560  *	After a panic or during autoconfiguration, lower the interrupt
    561  *	priority level to give pending interrupts a chance to run, and
    562  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    563  *	always returns zero.
    564  */
    565 int
    566 sleepq_abort(kmutex_t *mtx, int unlock)
    567 {
    568 	int s;
    569 
    570 	s = splhigh();
    571 	splx(IPL_SAFEPRI);
    572 	splx(s);
    573 	if (mtx != NULL && unlock != 0)
    574 		mutex_exit(mtx);
    575 
    576 	return 0;
    577 }
    578 
    579 /*
    580  * sleepq_reinsert:
    581  *
    582  *	Move the position of the lwp in the sleep queue after a possible
    583  *	change of the lwp's effective priority.
    584  */
    585 static void
    586 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    587 {
    588 
    589 	KASSERT(l->l_sleepq == sq);
    590 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    591 		return;
    592 	}
    593 
    594 	/*
    595 	 * Don't let the sleep queue become empty, even briefly.
    596 	 * cv_signal() and cv_broadcast() inspect it without the
    597 	 * sleep queue lock held and need to see a non-empty queue
    598 	 * head if there are waiters.
    599 	 */
    600 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    601 		return;
    602 	}
    603 	LIST_REMOVE(l, l_sleepchain);
    604 	sleepq_insert(sq, l, l->l_syncobj);
    605 }
    606 
    607 /*
    608  * sleepq_changepri:
    609  *
    610  *	Adjust the priority of an LWP residing on a sleepq.
    611  */
    612 void
    613 sleepq_changepri(lwp_t *l, pri_t pri)
    614 {
    615 	sleepq_t *sq = l->l_sleepq;
    616 
    617 	KASSERT(lwp_locked(l, NULL));
    618 
    619 	l->l_priority = pri;
    620 	sleepq_reinsert(sq, l);
    621 }
    622 
    623 /*
    624  * sleepq_changepri:
    625  *
    626  *	Adjust the lended priority of an LWP residing on a sleepq.
    627  */
    628 void
    629 sleepq_lendpri(lwp_t *l, pri_t pri)
    630 {
    631 	sleepq_t *sq = l->l_sleepq;
    632 
    633 	KASSERT(lwp_locked(l, NULL));
    634 
    635 	l->l_inheritedprio = pri;
    636 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    637 	sleepq_reinsert(sq, l);
    638 }
    639