kern_softint.c revision 1.1.2.15 1 1.1.2.15 ad /* $NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.1 ad * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.2 ad * Generic software interrupt framework.
41 1.1.2.2 ad *
42 1.1.2.2 ad * Overview
43 1.1.2.2 ad *
44 1.1.2.2 ad * The soft interrupt framework provides a mechanism to schedule a
45 1.1.2.2 ad * low priority callback that runs with thread context. It allows
46 1.1.2.2 ad * for dynamic registration of software interrupts, and for fair
47 1.1.2.2 ad * queueing and prioritization of those interrupts. The callbacks
48 1.1.2.2 ad * can be scheduled to run from nearly any point in the kernel: by
49 1.1.2.2 ad * code running with thread context, by code running from a
50 1.1.2.2 ad * hardware interrupt handler, and at any interrupt priority
51 1.1.2.2 ad * level.
52 1.1.2.2 ad *
53 1.1.2.2 ad * Priority levels
54 1.1.2.2 ad *
55 1.1.2.2 ad * Since soft interrupt dispatch can be tied to the underlying
56 1.1.2.8 ad * architecture's interrupt dispatch code, it can be limited
57 1.1.2.2 ad * both by the capabilities of the hardware and the capabilities
58 1.1.2.8 ad * of the interrupt dispatch code itself. The number of priority
59 1.1.2.2 ad * levels is restricted to four. In order of priority (lowest to
60 1.1.2.2 ad * highest) the levels are: clock, bio, net, serial.
61 1.1.2.2 ad *
62 1.1.2.8 ad * The names are symbolic and in isolation do not have any direct
63 1.1.2.8 ad * connection with a particular kind of device activity: they are
64 1.1.2.8 ad * only meant as a guide.
65 1.1.2.2 ad *
66 1.1.2.2 ad * The four priority levels map directly to scheduler priority
67 1.1.2.2 ad * levels, and where the architecture implements 'fast' software
68 1.1.2.2 ad * interrupts, they also map onto interrupt priorities. The
69 1.1.2.2 ad * interrupt priorities are intended to be hidden from machine
70 1.1.2.8 ad * independent code, which should use thread-safe mechanisms to
71 1.1.2.8 ad * synchronize with software interrupts (for example: mutexes).
72 1.1.2.2 ad *
73 1.1.2.2 ad * Capabilities
74 1.1.2.2 ad *
75 1.1.2.8 ad * Software interrupts run with limited machine context. In
76 1.1.2.8 ad * particular, they do not posess any address space context. They
77 1.1.2.8 ad * should not try to operate on user space addresses, or to use
78 1.1.2.8 ad * virtual memory facilities other than those noted as interrupt
79 1.1.2.8 ad * safe.
80 1.1.2.2 ad *
81 1.1.2.2 ad * Unlike hardware interrupts, software interrupts do have thread
82 1.1.2.2 ad * context. They may block on synchronization objects, sleep, and
83 1.1.2.8 ad * resume execution at a later time.
84 1.1.2.2 ad *
85 1.1.2.8 ad * Since software interrupts are a limited resource and run with
86 1.1.2.8 ad * higher priority than most other LWPs in the system, all
87 1.1.2.8 ad * block-and-resume activity by a software interrupt must be kept
88 1.1.2.8 ad * short to allow futher processing at that level to continue. By
89 1.1.2.15 ad * extension, code running with process context must take care to
90 1.1.2.15 ad * ensure that any lock that may be taken from a software interrupt
91 1.1.2.15 ad * can not be held for more than a short period of time.
92 1.1.2.8 ad *
93 1.1.2.8 ad * The kernel does not allow software interrupts to use facilities
94 1.1.2.8 ad * or perform actions that may block for a significant amount of
95 1.1.2.8 ad * time. This means that it's not valid for a software interrupt
96 1.1.2.8 ad * to: sleep on condition variables, use the lockmgr() facility,
97 1.1.2.8 ad * or wait for resources to become available (for example,
98 1.1.2.8 ad * memory).
99 1.1.2.2 ad *
100 1.1.2.8 ad * Per-CPU operation
101 1.1.2.2 ad *
102 1.1.2.8 ad * If a soft interrupt is triggered on a CPU, it can only be
103 1.1.2.8 ad * dispatched on the same CPU. Each LWP dedicated to handling a
104 1.1.2.8 ad * soft interrupt is bound to its home CPU, so if the LWP blocks
105 1.1.2.8 ad * and needs to run again, it can only run there. Nearly all data
106 1.1.2.8 ad * structures used to manage software interrupts are per-CPU.
107 1.1.2.8 ad *
108 1.1.2.8 ad * The per-CPU requirement is intended to reduce "ping-pong" of
109 1.1.2.8 ad * cache lines between CPUs: lines occupied by data structures
110 1.1.2.8 ad * used to manage the soft interrupts, and lines occupied by data
111 1.1.2.8 ad * items being passed down to the soft interrupt. As a positive
112 1.1.2.8 ad * side effect, this also means that the soft interrupt dispatch
113 1.1.2.15 ad * code does not need to to use spinlocks to synchronize.
114 1.1.2.2 ad *
115 1.1.2.2 ad * Generic implementation
116 1.1.2.2 ad *
117 1.1.2.2 ad * A generic, low performance implementation is provided that
118 1.1.2.2 ad * works across all architectures, with no machine-dependent
119 1.1.2.2 ad * modifications needed. This implementation uses the scheduler,
120 1.1.2.2 ad * and so has a number of restrictions:
121 1.1.2.2 ad *
122 1.1.2.2 ad * 1) Since software interrupts can be triggered from any priority
123 1.1.2.2 ad * level, on architectures where the generic implementation is
124 1.1.2.8 ad * used IPL_SCHED must be equal to IPL_HIGH (it must block all
125 1.1.2.8 ad * interrupts).
126 1.1.2.2 ad *
127 1.1.2.8 ad * 2) The software interrupts are not currently preemptive, so
128 1.1.2.8 ad * must wait for the currently executing LWP to yield the CPU.
129 1.1.2.8 ad * This can introduce latency.
130 1.1.2.2 ad *
131 1.1.2.2 ad * 3) A context switch is required for each soft interrupt to be
132 1.1.2.2 ad * handled, which can be quite expensive.
133 1.1.2.2 ad *
134 1.1.2.2 ad * 'Fast' software interrupts
135 1.1.2.2 ad *
136 1.1.2.8 ad * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
137 1.1.2.8 ad * the fast mechanism. Threads running either in the kernel or in
138 1.1.2.8 ad * userspace will be interrupted, but will not be preempted. When
139 1.1.2.8 ad * the soft interrupt completes execution, the interrupted LWP
140 1.1.2.8 ad * is resumed. Interrupt dispatch code must provide the minimum
141 1.1.2.8 ad * level of context necessary for the soft interrupt to block and
142 1.1.2.8 ad * be resumed at a later time. The machine-dependent dispatch
143 1.1.2.8 ad * path looks something like the following:
144 1.1.2.8 ad *
145 1.1.2.8 ad * softintr()
146 1.1.2.8 ad * {
147 1.1.2.8 ad * go to IPL_HIGH if necessary for switch;
148 1.1.2.8 ad * save any necessary registers in a format that can be
149 1.1.2.8 ad * restored by cpu_switchto if the softint blocks;
150 1.1.2.8 ad * arrange for cpu_switchto() to restore into the
151 1.1.2.8 ad * trampoline function;
152 1.1.2.8 ad * identify LWP to handle this interrupt;
153 1.1.2.8 ad * switch to the LWP's stack;
154 1.1.2.8 ad * switch register stacks, if necessary;
155 1.1.2.8 ad * assign new value of curlwp;
156 1.1.2.8 ad * call MI softint_dispatch, passing old curlwp and IPL
157 1.1.2.8 ad * to execute interrupt at;
158 1.1.2.8 ad * switch back to old stack;
159 1.1.2.8 ad * switch back to old register stack, if necessary;
160 1.1.2.8 ad * restore curlwp;
161 1.1.2.8 ad * return to interrupted LWP;
162 1.1.2.8 ad * }
163 1.1.2.8 ad *
164 1.1.2.8 ad * If the soft interrupt blocks, a trampoline function is returned
165 1.1.2.8 ad * to in the context of the interrupted LWP, as arranged for by
166 1.1.2.8 ad * softint():
167 1.1.2.8 ad *
168 1.1.2.8 ad * softint_ret()
169 1.1.2.8 ad * {
170 1.1.2.8 ad * unlock soft interrupt LWP;
171 1.1.2.8 ad * resume interrupt processing, likely returning to
172 1.1.2.8 ad * interrupted LWP or dispatching another, different
173 1.1.2.8 ad * interrupt;
174 1.1.2.8 ad * }
175 1.1.2.8 ad *
176 1.1.2.8 ad * Once the soft interrupt has fired (and even if it has blocked),
177 1.1.2.8 ad * no further soft interrupts at that level will be triggered by
178 1.1.2.8 ad * MI code until the soft interrupt handler has ceased execution.
179 1.1.2.8 ad * If a soft interrupt handler blocks and is resumed, it resumes
180 1.1.2.8 ad * execution as a normal LWP (kthread) and gains VM context. Only
181 1.1.2.8 ad * when it has completed and is ready to fire again will it
182 1.1.2.8 ad * interrupt other threads.
183 1.1.2.1 ad */
184 1.1.2.1 ad
185 1.1.2.1 ad #include <sys/cdefs.h>
186 1.1.2.15 ad __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $");
187 1.1.2.1 ad
188 1.1.2.1 ad #include <sys/param.h>
189 1.1.2.1 ad #include <sys/malloc.h>
190 1.1.2.1 ad #include <sys/proc.h>
191 1.1.2.1 ad #include <sys/intr.h>
192 1.1.2.1 ad #include <sys/mutex.h>
193 1.1.2.1 ad #include <sys/kthread.h>
194 1.1.2.1 ad #include <sys/evcnt.h>
195 1.1.2.1 ad #include <sys/cpu.h>
196 1.1.2.1 ad
197 1.1.2.1 ad #include <net/netisr.h>
198 1.1.2.1 ad
199 1.1.2.1 ad #include <uvm/uvm_extern.h>
200 1.1.2.1 ad
201 1.1.2.3 ad #define PRI_SOFTSERIAL (PRI_COUNT - 1)
202 1.1.2.3 ad #define PRI_SOFTNET (PRI_SOFTSERIAL - schedppq * 1)
203 1.1.2.3 ad #define PRI_SOFTBIO (PRI_SOFTSERIAL - schedppq * 2)
204 1.1.2.3 ad #define PRI_SOFTCLOCK (PRI_SOFTSERIAL - schedppq * 3)
205 1.1.2.1 ad
206 1.1.2.1 ad /* This could overlap with signal info in struct lwp. */
207 1.1.2.1 ad typedef struct softint {
208 1.1.2.8 ad SIMPLEQ_HEAD(, softhand) si_q;
209 1.1.2.1 ad struct lwp *si_lwp;
210 1.1.2.1 ad struct cpu_info *si_cpu;
211 1.1.2.1 ad uintptr_t si_machdep;
212 1.1.2.1 ad struct evcnt si_evcnt;
213 1.1.2.14 yamt struct evcnt si_evcnt_block;
214 1.1.2.1 ad int si_active;
215 1.1.2.2 ad char si_name[8];
216 1.1.2.14 yamt char si_name_block[8+6];
217 1.1.2.1 ad } softint_t;
218 1.1.2.1 ad
219 1.1.2.1 ad typedef struct softhand {
220 1.1.2.8 ad SIMPLEQ_ENTRY(softhand) sh_q;
221 1.1.2.1 ad void (*sh_func)(void *);
222 1.1.2.1 ad void *sh_arg;
223 1.1.2.1 ad softint_t *sh_isr;
224 1.1.2.1 ad u_int sh_pending;
225 1.1.2.1 ad u_int sh_flags;
226 1.1.2.1 ad } softhand_t;
227 1.1.2.1 ad
228 1.1.2.1 ad typedef struct softcpu {
229 1.1.2.1 ad struct cpu_info *sc_cpu;
230 1.1.2.1 ad softint_t sc_int[SOFTINT_COUNT];
231 1.1.2.1 ad softhand_t sc_hand[1];
232 1.1.2.1 ad } softcpu_t;
233 1.1.2.1 ad
234 1.1.2.1 ad static void softint_thread(void *);
235 1.1.2.1 ad static void softint_netisr(void *);
236 1.1.2.1 ad
237 1.1.2.1 ad u_int softint_bytes = 8192;
238 1.1.2.6 ad u_int softint_timing;
239 1.1.2.1 ad static u_int softint_max;
240 1.1.2.1 ad static kmutex_t softint_lock;
241 1.1.2.1 ad static void *softint_netisr_sih;
242 1.1.2.1 ad
243 1.1.2.1 ad /*
244 1.1.2.1 ad * softint_init_isr:
245 1.1.2.1 ad *
246 1.1.2.1 ad * Initialize a single interrupt level for a single CPU.
247 1.1.2.1 ad */
248 1.1.2.1 ad static void
249 1.1.2.1 ad softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
250 1.1.2.1 ad {
251 1.1.2.1 ad struct cpu_info *ci;
252 1.1.2.1 ad softint_t *si;
253 1.1.2.1 ad int error;
254 1.1.2.1 ad
255 1.1.2.1 ad si = &sc->sc_int[level];
256 1.1.2.1 ad ci = sc->sc_cpu;
257 1.1.2.1 ad si->si_cpu = ci;
258 1.1.2.1 ad
259 1.1.2.8 ad SIMPLEQ_INIT(&si->si_q);
260 1.1.2.1 ad
261 1.1.2.1 ad error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
262 1.1.2.1 ad KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
263 1.1.2.1 ad "soft%s/%d", desc, (int)ci->ci_cpuid);
264 1.1.2.1 ad if (error != 0)
265 1.1.2.1 ad panic("softint_init_isr: error %d", error);
266 1.1.2.1 ad
267 1.1.2.2 ad snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
268 1.1.2.2 ad (int)ci->ci_cpuid);
269 1.1.2.1 ad evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
270 1.1.2.2 ad "softint", si->si_name);
271 1.1.2.14 yamt snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
272 1.1.2.14 yamt desc, (int)ci->ci_cpuid);
273 1.1.2.14 yamt evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
274 1.1.2.14 yamt "softint", si->si_name_block);
275 1.1.2.1 ad
276 1.1.2.3 ad si->si_lwp->l_private = si;
277 1.1.2.3 ad softint_init_md(si->si_lwp, level, &si->si_machdep);
278 1.1.2.2 ad #ifdef __HAVE_FAST_SOFTINTS
279 1.1.2.2 ad si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
280 1.1.2.2 ad #endif
281 1.1.2.1 ad }
282 1.1.2.1 ad /*
283 1.1.2.1 ad * softint_init:
284 1.1.2.1 ad *
285 1.1.2.1 ad * Initialize per-CPU data structures. Called from mi_cpu_attach().
286 1.1.2.1 ad */
287 1.1.2.1 ad void
288 1.1.2.1 ad softint_init(struct cpu_info *ci)
289 1.1.2.1 ad {
290 1.1.2.1 ad static struct cpu_info *first;
291 1.1.2.1 ad softcpu_t *sc, *scfirst;
292 1.1.2.1 ad softhand_t *sh, *shmax;
293 1.1.2.1 ad
294 1.1.2.1 ad if (first == NULL) {
295 1.1.2.2 ad /* Boot CPU. */
296 1.1.2.1 ad first = ci;
297 1.1.2.1 ad mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
298 1.1.2.1 ad softint_bytes = round_page(softint_bytes);
299 1.1.2.1 ad softint_max = (softint_bytes - sizeof(softcpu_t)) /
300 1.1.2.1 ad sizeof(softhand_t);
301 1.1.2.1 ad }
302 1.1.2.1 ad
303 1.1.2.1 ad sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
304 1.1.2.1 ad UVM_KMF_WIRED | UVM_KMF_ZERO);
305 1.1.2.1 ad if (sc == NULL)
306 1.1.2.1 ad panic("softint_init_cpu: cannot allocate memory");
307 1.1.2.1 ad
308 1.1.2.1 ad ci->ci_data.cpu_softcpu = sc;
309 1.1.2.1 ad sc->sc_cpu = ci;
310 1.1.2.1 ad
311 1.1.2.1 ad softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
312 1.1.2.1 ad softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
313 1.1.2.1 ad softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
314 1.1.2.1 ad softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
315 1.1.2.1 ad
316 1.1.2.1 ad if (first != ci) {
317 1.1.2.2 ad /* Don't lock -- autoconfiguration will prevent reentry. */
318 1.1.2.1 ad scfirst = first->ci_data.cpu_softcpu;
319 1.1.2.1 ad sh = sc->sc_hand;
320 1.1.2.1 ad memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
321 1.1.2.1 ad
322 1.1.2.1 ad /* Update pointers for this CPU. */
323 1.1.2.1 ad for (shmax = sh + softint_max; sh < shmax; sh++) {
324 1.1.2.1 ad if (sh->sh_func == NULL)
325 1.1.2.1 ad continue;
326 1.1.2.1 ad sh->sh_isr =
327 1.1.2.1 ad &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
328 1.1.2.1 ad }
329 1.1.2.1 ad } else {
330 1.1.2.1 ad /* Establish a handler for legacy net interrupts. */
331 1.1.2.1 ad softint_netisr_sih = softint_establish(SOFTINT_NET,
332 1.1.2.1 ad softint_netisr, NULL);
333 1.1.2.1 ad KASSERT(softint_netisr_sih != NULL);
334 1.1.2.1 ad }
335 1.1.2.1 ad }
336 1.1.2.1 ad
337 1.1.2.1 ad /*
338 1.1.2.1 ad * softint_establish:
339 1.1.2.1 ad *
340 1.1.2.1 ad * Register a software interrupt handler.
341 1.1.2.1 ad */
342 1.1.2.1 ad void *
343 1.1.2.1 ad softint_establish(u_int flags, void (*func)(void *), void *arg)
344 1.1.2.1 ad {
345 1.1.2.1 ad CPU_INFO_ITERATOR cii;
346 1.1.2.1 ad struct cpu_info *ci;
347 1.1.2.1 ad softcpu_t *sc;
348 1.1.2.1 ad softhand_t *sh;
349 1.1.2.3 ad u_int level, index;
350 1.1.2.1 ad
351 1.1.2.1 ad level = (flags & SOFTINT_LVLMASK);
352 1.1.2.1 ad KASSERT(level < SOFTINT_COUNT);
353 1.1.2.1 ad
354 1.1.2.1 ad mutex_enter(&softint_lock);
355 1.1.2.1 ad
356 1.1.2.1 ad /* Find a free slot. */
357 1.1.2.1 ad sc = curcpu()->ci_data.cpu_softcpu;
358 1.1.2.1 ad for (index = 1; index < softint_max; index++)
359 1.1.2.1 ad if (sc->sc_hand[index].sh_func == NULL)
360 1.1.2.1 ad break;
361 1.1.2.1 ad if (index == softint_max) {
362 1.1.2.1 ad mutex_exit(&softint_lock);
363 1.1.2.1 ad printf("WARNING: softint_establish: table full, "
364 1.1.2.1 ad "increase softint_bytes\n");
365 1.1.2.1 ad return NULL;
366 1.1.2.1 ad }
367 1.1.2.1 ad
368 1.1.2.1 ad /* Set up the handler on each CPU. */
369 1.1.2.1 ad for (CPU_INFO_FOREACH(cii, ci)) {
370 1.1.2.1 ad sc = ci->ci_data.cpu_softcpu;
371 1.1.2.1 ad sh = &sc->sc_hand[index];
372 1.1.2.1 ad
373 1.1.2.1 ad sh->sh_isr = &sc->sc_int[level];
374 1.1.2.1 ad sh->sh_func = func;
375 1.1.2.1 ad sh->sh_arg = arg;
376 1.1.2.1 ad sh->sh_flags = flags;
377 1.1.2.1 ad sh->sh_pending = 0;
378 1.1.2.1 ad }
379 1.1.2.1 ad
380 1.1.2.1 ad mutex_exit(&softint_lock);
381 1.1.2.1 ad
382 1.1.2.3 ad return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
383 1.1.2.1 ad }
384 1.1.2.1 ad
385 1.1.2.1 ad /*
386 1.1.2.1 ad * softint_disestablish:
387 1.1.2.1 ad *
388 1.1.2.1 ad * Unregister a software interrupt handler.
389 1.1.2.1 ad */
390 1.1.2.1 ad void
391 1.1.2.1 ad softint_disestablish(void *arg)
392 1.1.2.1 ad {
393 1.1.2.1 ad CPU_INFO_ITERATOR cii;
394 1.1.2.1 ad struct cpu_info *ci;
395 1.1.2.1 ad softcpu_t *sc;
396 1.1.2.1 ad softhand_t *sh;
397 1.1.2.3 ad uintptr_t offset;
398 1.1.2.1 ad
399 1.1.2.3 ad offset = (uintptr_t)arg;
400 1.1.2.3 ad KASSERT(offset != 0 && offset < softint_bytes);
401 1.1.2.1 ad
402 1.1.2.1 ad mutex_enter(&softint_lock);
403 1.1.2.1 ad
404 1.1.2.1 ad /* Set up the handler on each CPU. */
405 1.1.2.1 ad for (CPU_INFO_FOREACH(cii, ci)) {
406 1.1.2.1 ad sc = ci->ci_data.cpu_softcpu;
407 1.1.2.3 ad sh = (softhand_t *)((uint8_t *)sc + offset);
408 1.1.2.1 ad KASSERT(sh->sh_func != NULL);
409 1.1.2.1 ad KASSERT(sh->sh_pending == 0);
410 1.1.2.1 ad sh->sh_func = NULL;
411 1.1.2.1 ad }
412 1.1.2.1 ad
413 1.1.2.1 ad mutex_exit(&softint_lock);
414 1.1.2.1 ad }
415 1.1.2.1 ad
416 1.1.2.1 ad /*
417 1.1.2.1 ad * softint_schedule:
418 1.1.2.1 ad *
419 1.1.2.1 ad * Trigger a software interrupt. Must be called from a hardware
420 1.1.2.1 ad * interrupt handler, or with preemption disabled (since we are
421 1.1.2.1 ad * using the value of curcpu()).
422 1.1.2.1 ad */
423 1.1.2.1 ad void
424 1.1.2.1 ad softint_schedule(void *arg)
425 1.1.2.1 ad {
426 1.1.2.1 ad softhand_t *sh;
427 1.1.2.1 ad softint_t *si;
428 1.1.2.3 ad uintptr_t offset;
429 1.1.2.1 ad int s;
430 1.1.2.1 ad
431 1.1.2.1 ad /* Find the handler record for this CPU. */
432 1.1.2.3 ad offset = (uintptr_t)arg;
433 1.1.2.3 ad KASSERT(offset != 0 && offset < softint_bytes);
434 1.1.2.3 ad sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
435 1.1.2.1 ad
436 1.1.2.1 ad /* If it's already pending there's nothing to do. */
437 1.1.2.1 ad if (sh->sh_pending)
438 1.1.2.1 ad return;
439 1.1.2.1 ad
440 1.1.2.1 ad /*
441 1.1.2.1 ad * Enqueue the handler into the LWP's pending list.
442 1.1.2.1 ad * If the LWP is completely idle, then make it run.
443 1.1.2.1 ad */
444 1.1.2.1 ad s = splhigh();
445 1.1.2.1 ad if (!sh->sh_pending) {
446 1.1.2.1 ad si = sh->sh_isr;
447 1.1.2.1 ad sh->sh_pending = 1;
448 1.1.2.8 ad SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
449 1.1.2.1 ad if (si->si_active == 0) {
450 1.1.2.1 ad si->si_active = 1;
451 1.1.2.1 ad softint_trigger(si->si_machdep);
452 1.1.2.1 ad }
453 1.1.2.1 ad }
454 1.1.2.1 ad splx(s);
455 1.1.2.1 ad }
456 1.1.2.1 ad
457 1.1.2.1 ad /*
458 1.1.2.1 ad * softint_execute:
459 1.1.2.1 ad *
460 1.1.2.1 ad * Invoke handlers for the specified soft interrupt.
461 1.1.2.1 ad * Must be entered at splhigh. Will drop the priority
462 1.1.2.1 ad * to the level specified, but returns back at splhigh.
463 1.1.2.1 ad */
464 1.1.2.3 ad static inline void
465 1.1.2.3 ad softint_execute(softint_t *si, lwp_t *l, int s)
466 1.1.2.1 ad {
467 1.1.2.1 ad softhand_t *sh;
468 1.1.2.11 ad bool havelock;
469 1.1.2.1 ad
470 1.1.2.1 ad KASSERT(si->si_lwp == curlwp);
471 1.1.2.1 ad KASSERT(si->si_cpu == curcpu());
472 1.1.2.1 ad KASSERT(si->si_lwp->l_wchan == NULL);
473 1.1.2.1 ad KASSERT(si->si_active);
474 1.1.2.1 ad
475 1.1.2.11 ad havelock = false;
476 1.1.2.11 ad
477 1.1.2.9 ad /*
478 1.1.2.9 ad * Note: due to priority inheritance we may have interrupted a
479 1.1.2.10 yamt * higher priority LWP. Since the soft interrupt must be quick
480 1.1.2.10 yamt * and is non-preemptable, we don't bother yielding.
481 1.1.2.9 ad */
482 1.1.2.2 ad
483 1.1.2.9 ad while (!SIMPLEQ_EMPTY(&si->si_q)) {
484 1.1.2.2 ad /*
485 1.1.2.1 ad * Pick the longest waiting handler to run. We block
486 1.1.2.1 ad * interrupts but do not lock in order to do this, as
487 1.1.2.1 ad * we are protecting against the local CPU only.
488 1.1.2.1 ad */
489 1.1.2.8 ad sh = SIMPLEQ_FIRST(&si->si_q);
490 1.1.2.8 ad SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
491 1.1.2.1 ad sh->sh_pending = 0;
492 1.1.2.1 ad splx(s);
493 1.1.2.1 ad
494 1.1.2.1 ad /* Run the handler. */
495 1.1.2.11 ad if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
496 1.1.2.2 ad KERNEL_LOCK(1, l);
497 1.1.2.11 ad havelock = true;
498 1.1.2.1 ad }
499 1.1.2.1 ad (*sh->sh_func)(sh->sh_arg);
500 1.1.2.1 ad
501 1.1.2.1 ad (void)splhigh();
502 1.1.2.1 ad }
503 1.1.2.1 ad
504 1.1.2.11 ad if (havelock) {
505 1.1.2.11 ad KERNEL_UNLOCK_ONE(l);
506 1.1.2.11 ad }
507 1.1.2.11 ad
508 1.1.2.1 ad /*
509 1.1.2.1 ad * Unlocked, but only for statistics.
510 1.1.2.1 ad * Should be per-CPU to prevent cache ping-pong.
511 1.1.2.1 ad */
512 1.1.2.1 ad uvmexp.softs++;
513 1.1.2.1 ad
514 1.1.2.1 ad si->si_evcnt.ev_count++;
515 1.1.2.1 ad si->si_active = 0;
516 1.1.2.1 ad }
517 1.1.2.1 ad
518 1.1.2.1 ad /*
519 1.1.2.1 ad * schednetisr:
520 1.1.2.1 ad *
521 1.1.2.1 ad * Trigger a legacy network interrupt. XXX Needs to go away.
522 1.1.2.1 ad */
523 1.1.2.1 ad void
524 1.1.2.1 ad schednetisr(int isr)
525 1.1.2.1 ad {
526 1.1.2.1 ad int s;
527 1.1.2.1 ad
528 1.1.2.1 ad s = splhigh();
529 1.1.2.1 ad curcpu()->ci_data.cpu_netisrs |= (1 << isr);
530 1.1.2.1 ad softint_schedule(softint_netisr_sih);
531 1.1.2.1 ad splx(s);
532 1.1.2.1 ad }
533 1.1.2.1 ad
534 1.1.2.1 ad /*
535 1.1.2.1 ad * softintr_netisr:
536 1.1.2.1 ad *
537 1.1.2.2 ad * Dispatch legacy network interrupts. XXX Needs to go away.
538 1.1.2.1 ad */
539 1.1.2.1 ad static void
540 1.1.2.1 ad softint_netisr(void *cookie)
541 1.1.2.1 ad {
542 1.1.2.1 ad struct cpu_info *ci;
543 1.1.2.1 ad int s, bits;
544 1.1.2.1 ad
545 1.1.2.1 ad ci = curcpu();
546 1.1.2.1 ad
547 1.1.2.1 ad s = splhigh();
548 1.1.2.1 ad bits = ci->ci_data.cpu_netisrs;
549 1.1.2.1 ad ci->ci_data.cpu_netisrs = 0;
550 1.1.2.1 ad splx(s);
551 1.1.2.1 ad
552 1.1.2.1 ad #define DONETISR(which, func) \
553 1.1.2.1 ad do { \
554 1.1.2.1 ad void func(void); \
555 1.1.2.1 ad if ((bits & (1 << which)) != 0) \
556 1.1.2.1 ad func(); \
557 1.1.2.1 ad } while(0);
558 1.1.2.1 ad #include <net/netisr_dispatch.h>
559 1.1.2.1 ad #undef DONETISR
560 1.1.2.1 ad }
561 1.1.2.3 ad
562 1.1.2.3 ad #ifndef __HAVE_FAST_SOFTINTS
563 1.1.2.3 ad
564 1.1.2.3 ad /*
565 1.1.2.3 ad * softint_init_md:
566 1.1.2.3 ad *
567 1.1.2.6 ad * Perform machine-dependent initialization.
568 1.1.2.3 ad */
569 1.1.2.3 ad void
570 1.1.2.3 ad softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
571 1.1.2.3 ad {
572 1.1.2.3 ad softint_t *si;
573 1.1.2.3 ad
574 1.1.2.7 ad *machdep = (uintptr_t)l;
575 1.1.2.3 ad si = l->l_private;
576 1.1.2.3 ad
577 1.1.2.3 ad lwp_lock(l);
578 1.1.2.3 ad /* Cheat and make the KASSERT in softint_thread() happy. */
579 1.1.2.3 ad si->si_active = 1;
580 1.1.2.3 ad l->l_stat = LSRUN;
581 1.1.2.3 ad sched_enqueue(l, false);
582 1.1.2.3 ad lwp_unlock(l);
583 1.1.2.3 ad }
584 1.1.2.3 ad
585 1.1.2.3 ad /*
586 1.1.2.3 ad * softint_trigger:
587 1.1.2.3 ad *
588 1.1.2.3 ad * Cause a soft interrupt handler to begin executing.
589 1.1.2.3 ad */
590 1.1.2.3 ad void
591 1.1.2.3 ad softint_trigger(uintptr_t machdep)
592 1.1.2.3 ad {
593 1.1.2.3 ad struct cpu_info *ci;
594 1.1.2.3 ad lwp_t *l;
595 1.1.2.3 ad
596 1.1.2.3 ad l = (lwp_t *)machdep;
597 1.1.2.3 ad ci = l->l_cpu;
598 1.1.2.3 ad
599 1.1.2.3 ad spc_lock(ci);
600 1.1.2.3 ad l->l_mutex = ci->ci_schedstate.spc_mutex;
601 1.1.2.3 ad l->l_stat = LSRUN;
602 1.1.2.3 ad sched_enqueue(l, false);
603 1.1.2.12 ad cpu_need_resched(ci, RESCHED_IMMED);
604 1.1.2.3 ad spc_unlock(ci);
605 1.1.2.3 ad }
606 1.1.2.3 ad
607 1.1.2.3 ad /*
608 1.1.2.3 ad * softint_thread:
609 1.1.2.3 ad *
610 1.1.2.6 ad * Slow path MI software interrupt dispatch.
611 1.1.2.3 ad */
612 1.1.2.3 ad void
613 1.1.2.3 ad softint_thread(void *cookie)
614 1.1.2.3 ad {
615 1.1.2.3 ad softint_t *si;
616 1.1.2.3 ad lwp_t *l;
617 1.1.2.3 ad int s;
618 1.1.2.3 ad
619 1.1.2.3 ad l = curlwp;
620 1.1.2.3 ad si = l->l_private;
621 1.1.2.3 ad s = splhigh();
622 1.1.2.3 ad
623 1.1.2.3 ad for (;;) {
624 1.1.2.3 ad softint_execute(si, l, s);
625 1.1.2.3 ad
626 1.1.2.3 ad lwp_lock(l);
627 1.1.2.3 ad l->l_stat = LSIDL;
628 1.1.2.3 ad mi_switch(l);
629 1.1.2.3 ad }
630 1.1.2.3 ad }
631 1.1.2.3 ad
632 1.1.2.3 ad #else /* !__HAVE_FAST_SOFTINTS */
633 1.1.2.3 ad
634 1.1.2.3 ad /*
635 1.1.2.3 ad * softint_thread:
636 1.1.2.3 ad *
637 1.1.2.3 ad * In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
638 1.1.2.3 ad * restoring any state, so we should not arrive here - there is a
639 1.1.2.3 ad * direct handoff between the interrupt stub and softint_dispatch().
640 1.1.2.3 ad */
641 1.1.2.3 ad void
642 1.1.2.3 ad softint_thread(void *cookie)
643 1.1.2.3 ad {
644 1.1.2.3 ad
645 1.1.2.3 ad panic("softint_thread");
646 1.1.2.3 ad }
647 1.1.2.3 ad
648 1.1.2.3 ad /*
649 1.1.2.3 ad * softint_dispatch:
650 1.1.2.3 ad *
651 1.1.2.3 ad * Entry point from machine-dependent code.
652 1.1.2.3 ad */
653 1.1.2.3 ad void
654 1.1.2.3 ad softint_dispatch(lwp_t *pinned, int s)
655 1.1.2.3 ad {
656 1.1.2.6 ad struct timeval now;
657 1.1.2.3 ad softint_t *si;
658 1.1.2.6 ad u_int timing;
659 1.1.2.3 ad lwp_t *l;
660 1.1.2.3 ad
661 1.1.2.3 ad l = curlwp;
662 1.1.2.3 ad si = l->l_private;
663 1.1.2.3 ad
664 1.1.2.3 ad /*
665 1.1.2.3 ad * Note the interrupted LWP, and mark the current LWP as running
666 1.1.2.3 ad * before proceeding. Although this must as a rule be done with
667 1.1.2.3 ad * the LWP locked, at this point no external agents will want to
668 1.1.2.3 ad * modify the interrupt LWP's state.
669 1.1.2.3 ad */
670 1.1.2.6 ad timing = (softint_timing ? LW_TIMEINTR : 0);
671 1.1.2.3 ad l->l_switchto = pinned;
672 1.1.2.3 ad l->l_stat = LSONPROC;
673 1.1.2.6 ad l->l_flag |= (LW_RUNNING | timing);
674 1.1.2.3 ad
675 1.1.2.6 ad /*
676 1.1.2.6 ad * Dispatch the interrupt. If softints are being timed, charge
677 1.1.2.6 ad * for it.
678 1.1.2.6 ad */
679 1.1.2.6 ad if (timing)
680 1.1.2.6 ad microtime(&l->l_stime);
681 1.1.2.3 ad softint_execute(si, l, s);
682 1.1.2.6 ad if (timing) {
683 1.1.2.6 ad microtime(&now);
684 1.1.2.6 ad updatertime(l, &now);
685 1.1.2.6 ad l->l_flag &= ~LW_TIMEINTR;
686 1.1.2.6 ad }
687 1.1.2.3 ad
688 1.1.2.3 ad /*
689 1.1.2.6 ad * If we blocked while handling the interrupt, the pinned LWP is
690 1.1.2.6 ad * gone so switch to the idle LWP. It will select a new LWP to
691 1.1.2.6 ad * run.
692 1.1.2.3 ad *
693 1.1.2.5 ad * We must drop the priority level as switching at IPL_HIGH could
694 1.1.2.5 ad * deadlock the system. We have already set si->si_active = 0,
695 1.1.2.5 ad * which means another interrupt at this level can be triggered.
696 1.1.2.5 ad * That's not be a problem: we are lowering to level 's' which will
697 1.1.2.6 ad * prevent softint_dispatch() from being reentered at level 's',
698 1.1.2.6 ad * until the priority is finally dropped to IPL_NONE on entry to
699 1.1.2.6 ad * the idle loop.
700 1.1.2.3 ad */
701 1.1.2.4 ad l->l_stat = LSIDL;
702 1.1.2.3 ad if (l->l_switchto == NULL) {
703 1.1.2.3 ad splx(s);
704 1.1.2.13 yamt pmap_deactivate(l);
705 1.1.2.3 ad lwp_exit_switchaway(l);
706 1.1.2.3 ad /* NOTREACHED */
707 1.1.2.3 ad }
708 1.1.2.3 ad l->l_switchto = NULL;
709 1.1.2.3 ad l->l_flag &= ~LW_RUNNING;
710 1.1.2.3 ad }
711 1.1.2.3 ad
712 1.1.2.3 ad #endif /* !__HAVE_FAST_SOFTINTS */
713 1.1.2.14 yamt
714 1.1.2.14 yamt /*
715 1.1.2.14 yamt * softint_block:
716 1.1.2.14 yamt *
717 1.1.2.14 yamt * Update statistics when the soft interrupt blocks.
718 1.1.2.14 yamt */
719 1.1.2.14 yamt void
720 1.1.2.14 yamt softint_block(lwp_t *l)
721 1.1.2.14 yamt {
722 1.1.2.14 yamt softint_t *si = l->l_private;
723 1.1.2.14 yamt
724 1.1.2.14 yamt KASSERT((l->l_flag & LW_INTR) != 0);
725 1.1.2.14 yamt si->si_evcnt_block.ev_count++;
726 1.1.2.14 yamt }
727