Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.1.2.15
      1  1.1.2.15    ad /*	$NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $	*/
      2   1.1.2.1    ad 
      3   1.1.2.1    ad /*-
      4   1.1.2.1    ad  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5   1.1.2.1    ad  * All rights reserved.
      6   1.1.2.1    ad  *
      7   1.1.2.1    ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1.2.1    ad  * by Andrew Doran.
      9   1.1.2.1    ad  *
     10   1.1.2.1    ad  * Redistribution and use in source and binary forms, with or without
     11   1.1.2.1    ad  * modification, are permitted provided that the following conditions
     12   1.1.2.1    ad  * are met:
     13   1.1.2.1    ad  * 1. Redistributions of source code must retain the above copyright
     14   1.1.2.1    ad  *    notice, this list of conditions and the following disclaimer.
     15   1.1.2.1    ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1.2.1    ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1.2.1    ad  *    documentation and/or other materials provided with the distribution.
     18   1.1.2.1    ad  * 3. All advertising materials mentioning features or use of this software
     19   1.1.2.1    ad  *    must display the following acknowledgement:
     20   1.1.2.1    ad  *	This product includes software developed by the NetBSD
     21   1.1.2.1    ad  *	Foundation, Inc. and its contributors.
     22   1.1.2.1    ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1.2.1    ad  *    contributors may be used to endorse or promote products derived
     24   1.1.2.1    ad  *    from this software without specific prior written permission.
     25   1.1.2.1    ad  *
     26   1.1.2.1    ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1.2.1    ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1.2.1    ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1.2.1    ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1.2.1    ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1.2.1    ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1.2.1    ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1.2.1    ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1.2.1    ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1.2.1    ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1.2.1    ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1.2.1    ad  */
     38   1.1.2.1    ad 
     39   1.1.2.1    ad /*
     40   1.1.2.2    ad  * Generic software interrupt framework.
     41   1.1.2.2    ad  *
     42   1.1.2.2    ad  * Overview
     43   1.1.2.2    ad  *
     44   1.1.2.2    ad  *	The soft interrupt framework provides a mechanism to schedule a
     45   1.1.2.2    ad  *	low priority callback that runs with thread context.  It allows
     46   1.1.2.2    ad  *	for dynamic registration of software interrupts, and for fair
     47   1.1.2.2    ad  *	queueing and prioritization of those interrupts.  The callbacks
     48   1.1.2.2    ad  *	can be scheduled to run from nearly any point in the kernel: by
     49   1.1.2.2    ad  *	code running with thread context, by code running from a
     50   1.1.2.2    ad  *	hardware interrupt handler, and at any interrupt priority
     51   1.1.2.2    ad  *	level.
     52   1.1.2.2    ad  *
     53   1.1.2.2    ad  * Priority levels
     54   1.1.2.2    ad  *
     55   1.1.2.2    ad  *	Since soft interrupt dispatch can be tied to the underlying
     56   1.1.2.8    ad  *	architecture's interrupt dispatch code, it can be limited
     57   1.1.2.2    ad  *	both by the capabilities of the hardware and the capabilities
     58   1.1.2.8    ad  *	of the interrupt dispatch code itself.  The number of priority
     59   1.1.2.2    ad  *	levels is restricted to four.  In order of priority (lowest to
     60   1.1.2.2    ad  *	highest) the levels are: clock, bio, net, serial.
     61   1.1.2.2    ad  *
     62   1.1.2.8    ad  *	The names are symbolic and in isolation do not have any direct
     63   1.1.2.8    ad  *	connection with a particular kind of device activity: they are
     64   1.1.2.8    ad  *	only meant as a guide.
     65   1.1.2.2    ad  *
     66   1.1.2.2    ad  *	The four priority levels map directly to scheduler priority
     67   1.1.2.2    ad  *	levels, and where the architecture implements 'fast' software
     68   1.1.2.2    ad  *	interrupts, they also map onto interrupt priorities.  The
     69   1.1.2.2    ad  *	interrupt priorities are intended to be hidden from machine
     70   1.1.2.8    ad  *	independent code, which should use thread-safe mechanisms to
     71   1.1.2.8    ad  *	synchronize with software interrupts (for example: mutexes).
     72   1.1.2.2    ad  *
     73   1.1.2.2    ad  * Capabilities
     74   1.1.2.2    ad  *
     75   1.1.2.8    ad  *	Software interrupts run with limited machine context.  In
     76   1.1.2.8    ad  *	particular, they do not posess any address space context.  They
     77   1.1.2.8    ad  *	should not try to operate on user space addresses, or to use
     78   1.1.2.8    ad  *	virtual memory facilities other than those noted as interrupt
     79   1.1.2.8    ad  *	safe.
     80   1.1.2.2    ad  *
     81   1.1.2.2    ad  *	Unlike hardware interrupts, software interrupts do have thread
     82   1.1.2.2    ad  *	context.  They may block on synchronization objects, sleep, and
     83   1.1.2.8    ad  *	resume execution at a later time.
     84   1.1.2.2    ad  *
     85   1.1.2.8    ad  *	Since software interrupts are a limited resource and run with
     86   1.1.2.8    ad  *	higher priority than most other LWPs in the system, all
     87   1.1.2.8    ad  *	block-and-resume activity by a software interrupt must be kept
     88   1.1.2.8    ad  *	short to allow futher processing at that level to continue.  By
     89  1.1.2.15    ad  *	extension, code running with process context must take care to
     90  1.1.2.15    ad  *	ensure that any lock that may be taken from a software interrupt
     91  1.1.2.15    ad  *	can not be held for more than a short period of time.
     92   1.1.2.8    ad  *
     93   1.1.2.8    ad  *	The kernel does not allow software interrupts to use facilities
     94   1.1.2.8    ad  *	or perform actions that may block for a significant amount of
     95   1.1.2.8    ad  *	time.  This means that it's not valid for a software interrupt
     96   1.1.2.8    ad  *	to: sleep on condition variables, use the lockmgr() facility,
     97   1.1.2.8    ad  *	or wait for resources to become available (for example,
     98   1.1.2.8    ad  *	memory).
     99   1.1.2.2    ad  *
    100   1.1.2.8    ad  * Per-CPU operation
    101   1.1.2.2    ad  *
    102   1.1.2.8    ad  *	If a soft interrupt is triggered on a CPU, it can only be
    103   1.1.2.8    ad  *	dispatched on the same CPU.  Each LWP dedicated to handling a
    104   1.1.2.8    ad  *	soft interrupt is bound to its home CPU, so if the LWP blocks
    105   1.1.2.8    ad  *	and needs to run again, it can only run there.  Nearly all data
    106   1.1.2.8    ad  *	structures used to manage software interrupts are per-CPU.
    107   1.1.2.8    ad  *
    108   1.1.2.8    ad  *	The per-CPU requirement is intended to reduce "ping-pong" of
    109   1.1.2.8    ad  *	cache lines between CPUs: lines occupied by data structures
    110   1.1.2.8    ad  *	used to manage the soft interrupts, and lines occupied by data
    111   1.1.2.8    ad  *	items being passed down to the soft interrupt.  As a positive
    112   1.1.2.8    ad  *	side effect, this also means that the soft interrupt dispatch
    113  1.1.2.15    ad  *	code does not need to to use spinlocks to synchronize.
    114   1.1.2.2    ad  *
    115   1.1.2.2    ad  * Generic implementation
    116   1.1.2.2    ad  *
    117   1.1.2.2    ad  *	A generic, low performance implementation is provided that
    118   1.1.2.2    ad  *	works across all architectures, with no machine-dependent
    119   1.1.2.2    ad  *	modifications needed.  This implementation uses the scheduler,
    120   1.1.2.2    ad  *	and so has a number of restrictions:
    121   1.1.2.2    ad  *
    122   1.1.2.2    ad  *	1) Since software interrupts can be triggered from any priority
    123   1.1.2.2    ad  *	level, on architectures where the generic implementation is
    124   1.1.2.8    ad  *	used IPL_SCHED must be equal to IPL_HIGH (it must block all
    125   1.1.2.8    ad  *	interrupts).
    126   1.1.2.2    ad  *
    127   1.1.2.8    ad  *	2) The software interrupts are not currently preemptive, so
    128   1.1.2.8    ad  *	must wait for the currently executing LWP to yield the CPU.
    129   1.1.2.8    ad  *	This can introduce latency.
    130   1.1.2.2    ad  *
    131   1.1.2.2    ad  *	3) A context switch is required for each soft interrupt to be
    132   1.1.2.2    ad  *	handled, which can be quite expensive.
    133   1.1.2.2    ad  *
    134   1.1.2.2    ad  * 'Fast' software interrupts
    135   1.1.2.2    ad  *
    136   1.1.2.8    ad  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    137   1.1.2.8    ad  *	the fast mechanism.  Threads running either in the kernel or in
    138   1.1.2.8    ad  *	userspace will be interrupted, but will not be preempted.  When
    139   1.1.2.8    ad  *	the soft interrupt completes execution, the interrupted LWP
    140   1.1.2.8    ad  *	is resumed.  Interrupt dispatch code must provide the minimum
    141   1.1.2.8    ad  *	level of context necessary for the soft interrupt to block and
    142   1.1.2.8    ad  *	be resumed at a later time.  The machine-dependent dispatch
    143   1.1.2.8    ad  *	path looks something like the following:
    144   1.1.2.8    ad  *
    145   1.1.2.8    ad  *	softintr()
    146   1.1.2.8    ad  *	{
    147   1.1.2.8    ad  *		go to IPL_HIGH if necessary for switch;
    148   1.1.2.8    ad  *		save any necessary registers in a format that can be
    149   1.1.2.8    ad  *		    restored by cpu_switchto if the softint blocks;
    150   1.1.2.8    ad  *		arrange for cpu_switchto() to restore into the
    151   1.1.2.8    ad  *		    trampoline function;
    152   1.1.2.8    ad  *		identify LWP to handle this interrupt;
    153   1.1.2.8    ad  *		switch to the LWP's stack;
    154   1.1.2.8    ad  *		switch register stacks, if necessary;
    155   1.1.2.8    ad  *		assign new value of curlwp;
    156   1.1.2.8    ad  *		call MI softint_dispatch, passing old curlwp and IPL
    157   1.1.2.8    ad  *		    to execute interrupt at;
    158   1.1.2.8    ad  *		switch back to old stack;
    159   1.1.2.8    ad  *		switch back to old register stack, if necessary;
    160   1.1.2.8    ad  *		restore curlwp;
    161   1.1.2.8    ad  *		return to interrupted LWP;
    162   1.1.2.8    ad  *	}
    163   1.1.2.8    ad  *
    164   1.1.2.8    ad  *	If the soft interrupt blocks, a trampoline function is returned
    165   1.1.2.8    ad  *	to in the context of the interrupted LWP, as arranged for by
    166   1.1.2.8    ad  *	softint():
    167   1.1.2.8    ad  *
    168   1.1.2.8    ad  *	softint_ret()
    169   1.1.2.8    ad  *	{
    170   1.1.2.8    ad  *		unlock soft interrupt LWP;
    171   1.1.2.8    ad  *		resume interrupt processing, likely returning to
    172   1.1.2.8    ad  *		    interrupted LWP or dispatching another, different
    173   1.1.2.8    ad  *		    interrupt;
    174   1.1.2.8    ad  *	}
    175   1.1.2.8    ad  *
    176   1.1.2.8    ad  *	Once the soft interrupt has fired (and even if it has blocked),
    177   1.1.2.8    ad  *	no further soft interrupts at that level will be triggered by
    178   1.1.2.8    ad  *	MI code until the soft interrupt handler has ceased execution.
    179   1.1.2.8    ad  *	If a soft interrupt handler blocks and is resumed, it resumes
    180   1.1.2.8    ad  *	execution as a normal LWP (kthread) and gains VM context.  Only
    181   1.1.2.8    ad  *	when it has completed and is ready to fire again will it
    182   1.1.2.8    ad  *	interrupt other threads.
    183   1.1.2.1    ad  */
    184   1.1.2.1    ad 
    185   1.1.2.1    ad #include <sys/cdefs.h>
    186  1.1.2.15    ad __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $");
    187   1.1.2.1    ad 
    188   1.1.2.1    ad #include <sys/param.h>
    189   1.1.2.1    ad #include <sys/malloc.h>
    190   1.1.2.1    ad #include <sys/proc.h>
    191   1.1.2.1    ad #include <sys/intr.h>
    192   1.1.2.1    ad #include <sys/mutex.h>
    193   1.1.2.1    ad #include <sys/kthread.h>
    194   1.1.2.1    ad #include <sys/evcnt.h>
    195   1.1.2.1    ad #include <sys/cpu.h>
    196   1.1.2.1    ad 
    197   1.1.2.1    ad #include <net/netisr.h>
    198   1.1.2.1    ad 
    199   1.1.2.1    ad #include <uvm/uvm_extern.h>
    200   1.1.2.1    ad 
    201   1.1.2.3    ad #define	PRI_SOFTSERIAL	(PRI_COUNT - 1)
    202   1.1.2.3    ad #define	PRI_SOFTNET	(PRI_SOFTSERIAL - schedppq * 1)
    203   1.1.2.3    ad #define	PRI_SOFTBIO	(PRI_SOFTSERIAL - schedppq * 2)
    204   1.1.2.3    ad #define	PRI_SOFTCLOCK	(PRI_SOFTSERIAL - schedppq * 3)
    205   1.1.2.1    ad 
    206   1.1.2.1    ad /* This could overlap with signal info in struct lwp. */
    207   1.1.2.1    ad typedef struct softint {
    208   1.1.2.8    ad 	SIMPLEQ_HEAD(, softhand) si_q;
    209   1.1.2.1    ad 	struct lwp		*si_lwp;
    210   1.1.2.1    ad 	struct cpu_info		*si_cpu;
    211   1.1.2.1    ad 	uintptr_t		si_machdep;
    212   1.1.2.1    ad 	struct evcnt		si_evcnt;
    213  1.1.2.14  yamt 	struct evcnt		si_evcnt_block;
    214   1.1.2.1    ad 	int			si_active;
    215   1.1.2.2    ad 	char			si_name[8];
    216  1.1.2.14  yamt 	char			si_name_block[8+6];
    217   1.1.2.1    ad } softint_t;
    218   1.1.2.1    ad 
    219   1.1.2.1    ad typedef struct softhand {
    220   1.1.2.8    ad 	SIMPLEQ_ENTRY(softhand)	sh_q;
    221   1.1.2.1    ad 	void			(*sh_func)(void *);
    222   1.1.2.1    ad 	void			*sh_arg;
    223   1.1.2.1    ad 	softint_t		*sh_isr;
    224   1.1.2.1    ad 	u_int			sh_pending;
    225   1.1.2.1    ad 	u_int			sh_flags;
    226   1.1.2.1    ad } softhand_t;
    227   1.1.2.1    ad 
    228   1.1.2.1    ad typedef struct softcpu {
    229   1.1.2.1    ad 	struct cpu_info		*sc_cpu;
    230   1.1.2.1    ad 	softint_t		sc_int[SOFTINT_COUNT];
    231   1.1.2.1    ad 	softhand_t		sc_hand[1];
    232   1.1.2.1    ad } softcpu_t;
    233   1.1.2.1    ad 
    234   1.1.2.1    ad static void	softint_thread(void *);
    235   1.1.2.1    ad static void	softint_netisr(void *);
    236   1.1.2.1    ad 
    237   1.1.2.1    ad u_int		softint_bytes = 8192;
    238   1.1.2.6    ad u_int		softint_timing;
    239   1.1.2.1    ad static u_int	softint_max;
    240   1.1.2.1    ad static kmutex_t	softint_lock;
    241   1.1.2.1    ad static void	*softint_netisr_sih;
    242   1.1.2.1    ad 
    243   1.1.2.1    ad /*
    244   1.1.2.1    ad  * softint_init_isr:
    245   1.1.2.1    ad  *
    246   1.1.2.1    ad  *	Initialize a single interrupt level for a single CPU.
    247   1.1.2.1    ad  */
    248   1.1.2.1    ad static void
    249   1.1.2.1    ad softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    250   1.1.2.1    ad {
    251   1.1.2.1    ad 	struct cpu_info *ci;
    252   1.1.2.1    ad 	softint_t *si;
    253   1.1.2.1    ad 	int error;
    254   1.1.2.1    ad 
    255   1.1.2.1    ad 	si = &sc->sc_int[level];
    256   1.1.2.1    ad 	ci = sc->sc_cpu;
    257   1.1.2.1    ad 	si->si_cpu = ci;
    258   1.1.2.1    ad 
    259   1.1.2.8    ad 	SIMPLEQ_INIT(&si->si_q);
    260   1.1.2.1    ad 
    261   1.1.2.1    ad 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    262   1.1.2.1    ad 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    263   1.1.2.1    ad 	    "soft%s/%d", desc, (int)ci->ci_cpuid);
    264   1.1.2.1    ad 	if (error != 0)
    265   1.1.2.1    ad 		panic("softint_init_isr: error %d", error);
    266   1.1.2.1    ad 
    267   1.1.2.2    ad 	snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
    268   1.1.2.2    ad 	    (int)ci->ci_cpuid);
    269   1.1.2.1    ad 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
    270   1.1.2.2    ad 	   "softint", si->si_name);
    271  1.1.2.14  yamt 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
    272  1.1.2.14  yamt 	    desc, (int)ci->ci_cpuid);
    273  1.1.2.14  yamt 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
    274  1.1.2.14  yamt 	   "softint", si->si_name_block);
    275   1.1.2.1    ad 
    276   1.1.2.3    ad 	si->si_lwp->l_private = si;
    277   1.1.2.3    ad 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    278   1.1.2.2    ad #ifdef __HAVE_FAST_SOFTINTS
    279   1.1.2.2    ad 	si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
    280   1.1.2.2    ad #endif
    281   1.1.2.1    ad }
    282   1.1.2.1    ad /*
    283   1.1.2.1    ad  * softint_init:
    284   1.1.2.1    ad  *
    285   1.1.2.1    ad  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    286   1.1.2.1    ad  */
    287   1.1.2.1    ad void
    288   1.1.2.1    ad softint_init(struct cpu_info *ci)
    289   1.1.2.1    ad {
    290   1.1.2.1    ad 	static struct cpu_info *first;
    291   1.1.2.1    ad 	softcpu_t *sc, *scfirst;
    292   1.1.2.1    ad 	softhand_t *sh, *shmax;
    293   1.1.2.1    ad 
    294   1.1.2.1    ad 	if (first == NULL) {
    295   1.1.2.2    ad 		/* Boot CPU. */
    296   1.1.2.1    ad 		first = ci;
    297   1.1.2.1    ad 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    298   1.1.2.1    ad 		softint_bytes = round_page(softint_bytes);
    299   1.1.2.1    ad 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    300   1.1.2.1    ad 		    sizeof(softhand_t);
    301   1.1.2.1    ad 	}
    302   1.1.2.1    ad 
    303   1.1.2.1    ad 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    304   1.1.2.1    ad 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    305   1.1.2.1    ad 	if (sc == NULL)
    306   1.1.2.1    ad 		panic("softint_init_cpu: cannot allocate memory");
    307   1.1.2.1    ad 
    308   1.1.2.1    ad 	ci->ci_data.cpu_softcpu = sc;
    309   1.1.2.1    ad 	sc->sc_cpu = ci;
    310   1.1.2.1    ad 
    311   1.1.2.1    ad 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    312   1.1.2.1    ad 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    313   1.1.2.1    ad 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    314   1.1.2.1    ad 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    315   1.1.2.1    ad 
    316   1.1.2.1    ad 	if (first != ci) {
    317   1.1.2.2    ad 		/* Don't lock -- autoconfiguration will prevent reentry. */
    318   1.1.2.1    ad 		scfirst = first->ci_data.cpu_softcpu;
    319   1.1.2.1    ad 		sh = sc->sc_hand;
    320   1.1.2.1    ad 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    321   1.1.2.1    ad 
    322   1.1.2.1    ad 		/* Update pointers for this CPU. */
    323   1.1.2.1    ad 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    324   1.1.2.1    ad 			if (sh->sh_func == NULL)
    325   1.1.2.1    ad 				continue;
    326   1.1.2.1    ad 			sh->sh_isr =
    327   1.1.2.1    ad 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    328   1.1.2.1    ad 		}
    329   1.1.2.1    ad 	} else {
    330   1.1.2.1    ad 		/* Establish a handler for legacy net interrupts. */
    331   1.1.2.1    ad 		softint_netisr_sih = softint_establish(SOFTINT_NET,
    332   1.1.2.1    ad 		    softint_netisr, NULL);
    333   1.1.2.1    ad 		KASSERT(softint_netisr_sih != NULL);
    334   1.1.2.1    ad 	}
    335   1.1.2.1    ad }
    336   1.1.2.1    ad 
    337   1.1.2.1    ad /*
    338   1.1.2.1    ad  * softint_establish:
    339   1.1.2.1    ad  *
    340   1.1.2.1    ad  *	Register a software interrupt handler.
    341   1.1.2.1    ad  */
    342   1.1.2.1    ad void *
    343   1.1.2.1    ad softint_establish(u_int flags, void (*func)(void *), void *arg)
    344   1.1.2.1    ad {
    345   1.1.2.1    ad 	CPU_INFO_ITERATOR cii;
    346   1.1.2.1    ad 	struct cpu_info *ci;
    347   1.1.2.1    ad 	softcpu_t *sc;
    348   1.1.2.1    ad 	softhand_t *sh;
    349   1.1.2.3    ad 	u_int level, index;
    350   1.1.2.1    ad 
    351   1.1.2.1    ad 	level = (flags & SOFTINT_LVLMASK);
    352   1.1.2.1    ad 	KASSERT(level < SOFTINT_COUNT);
    353   1.1.2.1    ad 
    354   1.1.2.1    ad 	mutex_enter(&softint_lock);
    355   1.1.2.1    ad 
    356   1.1.2.1    ad 	/* Find a free slot. */
    357   1.1.2.1    ad 	sc = curcpu()->ci_data.cpu_softcpu;
    358   1.1.2.1    ad 	for (index = 1; index < softint_max; index++)
    359   1.1.2.1    ad 		if (sc->sc_hand[index].sh_func == NULL)
    360   1.1.2.1    ad 			break;
    361   1.1.2.1    ad 	if (index == softint_max) {
    362   1.1.2.1    ad 		mutex_exit(&softint_lock);
    363   1.1.2.1    ad 		printf("WARNING: softint_establish: table full, "
    364   1.1.2.1    ad 		    "increase softint_bytes\n");
    365   1.1.2.1    ad 		return NULL;
    366   1.1.2.1    ad 	}
    367   1.1.2.1    ad 
    368   1.1.2.1    ad 	/* Set up the handler on each CPU. */
    369   1.1.2.1    ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    370   1.1.2.1    ad 		sc = ci->ci_data.cpu_softcpu;
    371   1.1.2.1    ad 		sh = &sc->sc_hand[index];
    372   1.1.2.1    ad 
    373   1.1.2.1    ad 		sh->sh_isr = &sc->sc_int[level];
    374   1.1.2.1    ad 		sh->sh_func = func;
    375   1.1.2.1    ad 		sh->sh_arg = arg;
    376   1.1.2.1    ad 		sh->sh_flags = flags;
    377   1.1.2.1    ad 		sh->sh_pending = 0;
    378   1.1.2.1    ad 	}
    379   1.1.2.1    ad 
    380   1.1.2.1    ad 	mutex_exit(&softint_lock);
    381   1.1.2.1    ad 
    382   1.1.2.3    ad 	return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    383   1.1.2.1    ad }
    384   1.1.2.1    ad 
    385   1.1.2.1    ad /*
    386   1.1.2.1    ad  * softint_disestablish:
    387   1.1.2.1    ad  *
    388   1.1.2.1    ad  *	Unregister a software interrupt handler.
    389   1.1.2.1    ad  */
    390   1.1.2.1    ad void
    391   1.1.2.1    ad softint_disestablish(void *arg)
    392   1.1.2.1    ad {
    393   1.1.2.1    ad 	CPU_INFO_ITERATOR cii;
    394   1.1.2.1    ad 	struct cpu_info *ci;
    395   1.1.2.1    ad 	softcpu_t *sc;
    396   1.1.2.1    ad 	softhand_t *sh;
    397   1.1.2.3    ad 	uintptr_t offset;
    398   1.1.2.1    ad 
    399   1.1.2.3    ad 	offset = (uintptr_t)arg;
    400   1.1.2.3    ad 	KASSERT(offset != 0 && offset < softint_bytes);
    401   1.1.2.1    ad 
    402   1.1.2.1    ad 	mutex_enter(&softint_lock);
    403   1.1.2.1    ad 
    404   1.1.2.1    ad 	/* Set up the handler on each CPU. */
    405   1.1.2.1    ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    406   1.1.2.1    ad 		sc = ci->ci_data.cpu_softcpu;
    407   1.1.2.3    ad 		sh = (softhand_t *)((uint8_t *)sc + offset);
    408   1.1.2.1    ad 		KASSERT(sh->sh_func != NULL);
    409   1.1.2.1    ad 		KASSERT(sh->sh_pending == 0);
    410   1.1.2.1    ad 		sh->sh_func = NULL;
    411   1.1.2.1    ad 	}
    412   1.1.2.1    ad 
    413   1.1.2.1    ad 	mutex_exit(&softint_lock);
    414   1.1.2.1    ad }
    415   1.1.2.1    ad 
    416   1.1.2.1    ad /*
    417   1.1.2.1    ad  * softint_schedule:
    418   1.1.2.1    ad  *
    419   1.1.2.1    ad  *	Trigger a software interrupt.  Must be called from a hardware
    420   1.1.2.1    ad  *	interrupt handler, or with preemption disabled (since we are
    421   1.1.2.1    ad  *	using the value of curcpu()).
    422   1.1.2.1    ad  */
    423   1.1.2.1    ad void
    424   1.1.2.1    ad softint_schedule(void *arg)
    425   1.1.2.1    ad {
    426   1.1.2.1    ad 	softhand_t *sh;
    427   1.1.2.1    ad 	softint_t *si;
    428   1.1.2.3    ad 	uintptr_t offset;
    429   1.1.2.1    ad 	int s;
    430   1.1.2.1    ad 
    431   1.1.2.1    ad 	/* Find the handler record for this CPU. */
    432   1.1.2.3    ad 	offset = (uintptr_t)arg;
    433   1.1.2.3    ad 	KASSERT(offset != 0 && offset < softint_bytes);
    434   1.1.2.3    ad 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    435   1.1.2.1    ad 
    436   1.1.2.1    ad 	/* If it's already pending there's nothing to do. */
    437   1.1.2.1    ad 	if (sh->sh_pending)
    438   1.1.2.1    ad 		return;
    439   1.1.2.1    ad 
    440   1.1.2.1    ad 	/*
    441   1.1.2.1    ad 	 * Enqueue the handler into the LWP's pending list.
    442   1.1.2.1    ad 	 * If the LWP is completely idle, then make it run.
    443   1.1.2.1    ad 	 */
    444   1.1.2.1    ad 	s = splhigh();
    445   1.1.2.1    ad 	if (!sh->sh_pending) {
    446   1.1.2.1    ad 		si = sh->sh_isr;
    447   1.1.2.1    ad 		sh->sh_pending = 1;
    448   1.1.2.8    ad 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    449   1.1.2.1    ad 		if (si->si_active == 0) {
    450   1.1.2.1    ad 			si->si_active = 1;
    451   1.1.2.1    ad 			softint_trigger(si->si_machdep);
    452   1.1.2.1    ad 		}
    453   1.1.2.1    ad 	}
    454   1.1.2.1    ad 	splx(s);
    455   1.1.2.1    ad }
    456   1.1.2.1    ad 
    457   1.1.2.1    ad /*
    458   1.1.2.1    ad  * softint_execute:
    459   1.1.2.1    ad  *
    460   1.1.2.1    ad  *	Invoke handlers for the specified soft interrupt.
    461   1.1.2.1    ad  *	Must be entered at splhigh.  Will drop the priority
    462   1.1.2.1    ad  *	to the level specified, but returns back at splhigh.
    463   1.1.2.1    ad  */
    464   1.1.2.3    ad static inline void
    465   1.1.2.3    ad softint_execute(softint_t *si, lwp_t *l, int s)
    466   1.1.2.1    ad {
    467   1.1.2.1    ad 	softhand_t *sh;
    468  1.1.2.11    ad 	bool havelock;
    469   1.1.2.1    ad 
    470   1.1.2.1    ad 	KASSERT(si->si_lwp == curlwp);
    471   1.1.2.1    ad 	KASSERT(si->si_cpu == curcpu());
    472   1.1.2.1    ad 	KASSERT(si->si_lwp->l_wchan == NULL);
    473   1.1.2.1    ad 	KASSERT(si->si_active);
    474   1.1.2.1    ad 
    475  1.1.2.11    ad 	havelock = false;
    476  1.1.2.11    ad 
    477   1.1.2.9    ad 	/*
    478   1.1.2.9    ad 	 * Note: due to priority inheritance we may have interrupted a
    479  1.1.2.10  yamt 	 * higher priority LWP.  Since the soft interrupt must be quick
    480  1.1.2.10  yamt 	 * and is non-preemptable, we don't bother yielding.
    481   1.1.2.9    ad 	 */
    482   1.1.2.2    ad 
    483   1.1.2.9    ad 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    484   1.1.2.2    ad 		/*
    485   1.1.2.1    ad 		 * Pick the longest waiting handler to run.  We block
    486   1.1.2.1    ad 		 * interrupts but do not lock in order to do this, as
    487   1.1.2.1    ad 		 * we are protecting against the local CPU only.
    488   1.1.2.1    ad 		 */
    489   1.1.2.8    ad 		sh = SIMPLEQ_FIRST(&si->si_q);
    490   1.1.2.8    ad 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    491   1.1.2.1    ad 		sh->sh_pending = 0;
    492   1.1.2.1    ad 		splx(s);
    493   1.1.2.1    ad 
    494   1.1.2.1    ad 		/* Run the handler. */
    495  1.1.2.11    ad 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
    496   1.1.2.2    ad 			KERNEL_LOCK(1, l);
    497  1.1.2.11    ad 			havelock = true;
    498   1.1.2.1    ad 		}
    499   1.1.2.1    ad 		(*sh->sh_func)(sh->sh_arg);
    500   1.1.2.1    ad 
    501   1.1.2.1    ad 		(void)splhigh();
    502   1.1.2.1    ad 	}
    503   1.1.2.1    ad 
    504  1.1.2.11    ad 	if (havelock) {
    505  1.1.2.11    ad 		KERNEL_UNLOCK_ONE(l);
    506  1.1.2.11    ad 	}
    507  1.1.2.11    ad 
    508   1.1.2.1    ad 	/*
    509   1.1.2.1    ad 	 * Unlocked, but only for statistics.
    510   1.1.2.1    ad 	 * Should be per-CPU to prevent cache ping-pong.
    511   1.1.2.1    ad 	 */
    512   1.1.2.1    ad 	uvmexp.softs++;
    513   1.1.2.1    ad 
    514   1.1.2.1    ad 	si->si_evcnt.ev_count++;
    515   1.1.2.1    ad 	si->si_active = 0;
    516   1.1.2.1    ad }
    517   1.1.2.1    ad 
    518   1.1.2.1    ad /*
    519   1.1.2.1    ad  * schednetisr:
    520   1.1.2.1    ad  *
    521   1.1.2.1    ad  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    522   1.1.2.1    ad  */
    523   1.1.2.1    ad void
    524   1.1.2.1    ad schednetisr(int isr)
    525   1.1.2.1    ad {
    526   1.1.2.1    ad 	int s;
    527   1.1.2.1    ad 
    528   1.1.2.1    ad 	s = splhigh();
    529   1.1.2.1    ad 	curcpu()->ci_data.cpu_netisrs |= (1 << isr);
    530   1.1.2.1    ad 	softint_schedule(softint_netisr_sih);
    531   1.1.2.1    ad 	splx(s);
    532   1.1.2.1    ad }
    533   1.1.2.1    ad 
    534   1.1.2.1    ad /*
    535   1.1.2.1    ad  * softintr_netisr:
    536   1.1.2.1    ad  *
    537   1.1.2.2    ad  *	Dispatch legacy network interrupts.  XXX Needs to go away.
    538   1.1.2.1    ad  */
    539   1.1.2.1    ad static void
    540   1.1.2.1    ad softint_netisr(void *cookie)
    541   1.1.2.1    ad {
    542   1.1.2.1    ad 	struct cpu_info *ci;
    543   1.1.2.1    ad 	int s, bits;
    544   1.1.2.1    ad 
    545   1.1.2.1    ad 	ci = curcpu();
    546   1.1.2.1    ad 
    547   1.1.2.1    ad 	s = splhigh();
    548   1.1.2.1    ad 	bits = ci->ci_data.cpu_netisrs;
    549   1.1.2.1    ad 	ci->ci_data.cpu_netisrs = 0;
    550   1.1.2.1    ad 	splx(s);
    551   1.1.2.1    ad 
    552   1.1.2.1    ad #define	DONETISR(which, func)				\
    553   1.1.2.1    ad 	do {						\
    554   1.1.2.1    ad 		void func(void);			\
    555   1.1.2.1    ad 		if ((bits & (1 << which)) != 0)		\
    556   1.1.2.1    ad 			func();				\
    557   1.1.2.1    ad 	} while(0);
    558   1.1.2.1    ad #include <net/netisr_dispatch.h>
    559   1.1.2.1    ad #undef DONETISR
    560   1.1.2.1    ad }
    561   1.1.2.3    ad 
    562   1.1.2.3    ad #ifndef __HAVE_FAST_SOFTINTS
    563   1.1.2.3    ad 
    564   1.1.2.3    ad /*
    565   1.1.2.3    ad  * softint_init_md:
    566   1.1.2.3    ad  *
    567   1.1.2.6    ad  *	Perform machine-dependent initialization.
    568   1.1.2.3    ad  */
    569   1.1.2.3    ad void
    570   1.1.2.3    ad softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    571   1.1.2.3    ad {
    572   1.1.2.3    ad 	softint_t *si;
    573   1.1.2.3    ad 
    574   1.1.2.7    ad 	*machdep = (uintptr_t)l;
    575   1.1.2.3    ad 	si = l->l_private;
    576   1.1.2.3    ad 
    577   1.1.2.3    ad 	lwp_lock(l);
    578   1.1.2.3    ad 	/* Cheat and make the KASSERT in softint_thread() happy. */
    579   1.1.2.3    ad 	si->si_active = 1;
    580   1.1.2.3    ad 	l->l_stat = LSRUN;
    581   1.1.2.3    ad 	sched_enqueue(l, false);
    582   1.1.2.3    ad 	lwp_unlock(l);
    583   1.1.2.3    ad }
    584   1.1.2.3    ad 
    585   1.1.2.3    ad /*
    586   1.1.2.3    ad  * softint_trigger:
    587   1.1.2.3    ad  *
    588   1.1.2.3    ad  *	Cause a soft interrupt handler to begin executing.
    589   1.1.2.3    ad  */
    590   1.1.2.3    ad void
    591   1.1.2.3    ad softint_trigger(uintptr_t machdep)
    592   1.1.2.3    ad {
    593   1.1.2.3    ad 	struct cpu_info *ci;
    594   1.1.2.3    ad 	lwp_t *l;
    595   1.1.2.3    ad 
    596   1.1.2.3    ad 	l = (lwp_t *)machdep;
    597   1.1.2.3    ad 	ci = l->l_cpu;
    598   1.1.2.3    ad 
    599   1.1.2.3    ad 	spc_lock(ci);
    600   1.1.2.3    ad 	l->l_mutex = ci->ci_schedstate.spc_mutex;
    601   1.1.2.3    ad 	l->l_stat = LSRUN;
    602   1.1.2.3    ad 	sched_enqueue(l, false);
    603  1.1.2.12    ad 	cpu_need_resched(ci, RESCHED_IMMED);
    604   1.1.2.3    ad 	spc_unlock(ci);
    605   1.1.2.3    ad }
    606   1.1.2.3    ad 
    607   1.1.2.3    ad /*
    608   1.1.2.3    ad  * softint_thread:
    609   1.1.2.3    ad  *
    610   1.1.2.6    ad  *	Slow path MI software interrupt dispatch.
    611   1.1.2.3    ad  */
    612   1.1.2.3    ad void
    613   1.1.2.3    ad softint_thread(void *cookie)
    614   1.1.2.3    ad {
    615   1.1.2.3    ad 	softint_t *si;
    616   1.1.2.3    ad 	lwp_t *l;
    617   1.1.2.3    ad 	int s;
    618   1.1.2.3    ad 
    619   1.1.2.3    ad 	l = curlwp;
    620   1.1.2.3    ad 	si = l->l_private;
    621   1.1.2.3    ad 	s = splhigh();
    622   1.1.2.3    ad 
    623   1.1.2.3    ad 	for (;;) {
    624   1.1.2.3    ad 		softint_execute(si, l, s);
    625   1.1.2.3    ad 
    626   1.1.2.3    ad 		lwp_lock(l);
    627   1.1.2.3    ad 		l->l_stat = LSIDL;
    628   1.1.2.3    ad 		mi_switch(l);
    629   1.1.2.3    ad 	}
    630   1.1.2.3    ad }
    631   1.1.2.3    ad 
    632   1.1.2.3    ad #else	/*  !__HAVE_FAST_SOFTINTS */
    633   1.1.2.3    ad 
    634   1.1.2.3    ad /*
    635   1.1.2.3    ad  * softint_thread:
    636   1.1.2.3    ad  *
    637   1.1.2.3    ad  *	In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
    638   1.1.2.3    ad  *	restoring any state, so we should not arrive here - there is a
    639   1.1.2.3    ad  *	direct handoff between the interrupt stub and softint_dispatch().
    640   1.1.2.3    ad  */
    641   1.1.2.3    ad void
    642   1.1.2.3    ad softint_thread(void *cookie)
    643   1.1.2.3    ad {
    644   1.1.2.3    ad 
    645   1.1.2.3    ad 	panic("softint_thread");
    646   1.1.2.3    ad }
    647   1.1.2.3    ad 
    648   1.1.2.3    ad /*
    649   1.1.2.3    ad  * softint_dispatch:
    650   1.1.2.3    ad  *
    651   1.1.2.3    ad  *	Entry point from machine-dependent code.
    652   1.1.2.3    ad  */
    653   1.1.2.3    ad void
    654   1.1.2.3    ad softint_dispatch(lwp_t *pinned, int s)
    655   1.1.2.3    ad {
    656   1.1.2.6    ad 	struct timeval now;
    657   1.1.2.3    ad 	softint_t *si;
    658   1.1.2.6    ad 	u_int timing;
    659   1.1.2.3    ad 	lwp_t *l;
    660   1.1.2.3    ad 
    661   1.1.2.3    ad 	l = curlwp;
    662   1.1.2.3    ad 	si = l->l_private;
    663   1.1.2.3    ad 
    664   1.1.2.3    ad 	/*
    665   1.1.2.3    ad 	 * Note the interrupted LWP, and mark the current LWP as running
    666   1.1.2.3    ad 	 * before proceeding.  Although this must as a rule be done with
    667   1.1.2.3    ad 	 * the LWP locked, at this point no external agents will want to
    668   1.1.2.3    ad 	 * modify the interrupt LWP's state.
    669   1.1.2.3    ad 	 */
    670   1.1.2.6    ad 	timing = (softint_timing ? LW_TIMEINTR : 0);
    671   1.1.2.3    ad 	l->l_switchto = pinned;
    672   1.1.2.3    ad 	l->l_stat = LSONPROC;
    673   1.1.2.6    ad 	l->l_flag |= (LW_RUNNING | timing);
    674   1.1.2.3    ad 
    675   1.1.2.6    ad 	/*
    676   1.1.2.6    ad 	 * Dispatch the interrupt.  If softints are being timed, charge
    677   1.1.2.6    ad 	 * for it.
    678   1.1.2.6    ad 	 */
    679   1.1.2.6    ad 	if (timing)
    680   1.1.2.6    ad 		microtime(&l->l_stime);
    681   1.1.2.3    ad 	softint_execute(si, l, s);
    682   1.1.2.6    ad 	if (timing) {
    683   1.1.2.6    ad 		microtime(&now);
    684   1.1.2.6    ad 		updatertime(l, &now);
    685   1.1.2.6    ad 		l->l_flag &= ~LW_TIMEINTR;
    686   1.1.2.6    ad 	}
    687   1.1.2.3    ad 
    688   1.1.2.3    ad 	/*
    689   1.1.2.6    ad 	 * If we blocked while handling the interrupt, the pinned LWP is
    690   1.1.2.6    ad 	 * gone so switch to the idle LWP.  It will select a new LWP to
    691   1.1.2.6    ad 	 * run.
    692   1.1.2.3    ad 	 *
    693   1.1.2.5    ad 	 * We must drop the priority level as switching at IPL_HIGH could
    694   1.1.2.5    ad 	 * deadlock the system.  We have already set si->si_active = 0,
    695   1.1.2.5    ad 	 * which means another interrupt at this level can be triggered.
    696   1.1.2.5    ad 	 * That's not be a problem: we are lowering to level 's' which will
    697   1.1.2.6    ad 	 * prevent softint_dispatch() from being reentered at level 's',
    698   1.1.2.6    ad 	 * until the priority is finally dropped to IPL_NONE on entry to
    699   1.1.2.6    ad 	 * the idle loop.
    700   1.1.2.3    ad 	 */
    701   1.1.2.4    ad 	l->l_stat = LSIDL;
    702   1.1.2.3    ad 	if (l->l_switchto == NULL) {
    703   1.1.2.3    ad 		splx(s);
    704  1.1.2.13  yamt 		pmap_deactivate(l);
    705   1.1.2.3    ad 		lwp_exit_switchaway(l);
    706   1.1.2.3    ad 		/* NOTREACHED */
    707   1.1.2.3    ad 	}
    708   1.1.2.3    ad 	l->l_switchto = NULL;
    709   1.1.2.3    ad 	l->l_flag &= ~LW_RUNNING;
    710   1.1.2.3    ad }
    711   1.1.2.3    ad 
    712   1.1.2.3    ad #endif	/* !__HAVE_FAST_SOFTINTS */
    713  1.1.2.14  yamt 
    714  1.1.2.14  yamt /*
    715  1.1.2.14  yamt  * softint_block:
    716  1.1.2.14  yamt  *
    717  1.1.2.14  yamt  *	Update statistics when the soft interrupt blocks.
    718  1.1.2.14  yamt  */
    719  1.1.2.14  yamt void
    720  1.1.2.14  yamt softint_block(lwp_t *l)
    721  1.1.2.14  yamt {
    722  1.1.2.14  yamt 	softint_t *si = l->l_private;
    723  1.1.2.14  yamt 
    724  1.1.2.14  yamt 	KASSERT((l->l_flag & LW_INTR) != 0);
    725  1.1.2.14  yamt 	si->si_evcnt_block.ev_count++;
    726  1.1.2.14  yamt }
    727