Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.1.2.6
      1  1.1.2.6  ad /*	$NetBSD: kern_softint.c,v 1.1.2.6 2007/07/14 22:09:44 ad Exp $	*/
      2  1.1.2.1  ad 
      3  1.1.2.1  ad /*-
      4  1.1.2.1  ad  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5  1.1.2.1  ad  * All rights reserved.
      6  1.1.2.1  ad  *
      7  1.1.2.1  ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1.2.1  ad  * by Andrew Doran.
      9  1.1.2.1  ad  *
     10  1.1.2.1  ad  * Redistribution and use in source and binary forms, with or without
     11  1.1.2.1  ad  * modification, are permitted provided that the following conditions
     12  1.1.2.1  ad  * are met:
     13  1.1.2.1  ad  * 1. Redistributions of source code must retain the above copyright
     14  1.1.2.1  ad  *    notice, this list of conditions and the following disclaimer.
     15  1.1.2.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1.2.1  ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1.2.1  ad  *    documentation and/or other materials provided with the distribution.
     18  1.1.2.1  ad  * 3. All advertising materials mentioning features or use of this software
     19  1.1.2.1  ad  *    must display the following acknowledgement:
     20  1.1.2.1  ad  *	This product includes software developed by the NetBSD
     21  1.1.2.1  ad  *	Foundation, Inc. and its contributors.
     22  1.1.2.1  ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1.2.1  ad  *    contributors may be used to endorse or promote products derived
     24  1.1.2.1  ad  *    from this software without specific prior written permission.
     25  1.1.2.1  ad  *
     26  1.1.2.1  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1.2.1  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1.2.1  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1.2.1  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1.2.1  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1.2.1  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1.2.1  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1.2.1  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1.2.1  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1.2.1  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1.2.1  ad  * POSSIBILITY OF SUCH DAMAGE.
     37  1.1.2.1  ad  */
     38  1.1.2.1  ad 
     39  1.1.2.1  ad /*
     40  1.1.2.2  ad  * Generic software interrupt framework.
     41  1.1.2.2  ad  *
     42  1.1.2.2  ad  * Overview
     43  1.1.2.2  ad  *
     44  1.1.2.2  ad  *	The soft interrupt framework provides a mechanism to schedule a
     45  1.1.2.2  ad  *	low priority callback that runs with thread context.  It allows
     46  1.1.2.2  ad  *	for dynamic registration of software interrupts, and for fair
     47  1.1.2.2  ad  *	queueing and prioritization of those interrupts.  The callbacks
     48  1.1.2.2  ad  *	can be scheduled to run from nearly any point in the kernel: by
     49  1.1.2.2  ad  *	code running with thread context, by code running from a
     50  1.1.2.2  ad  *	hardware interrupt handler, and at any interrupt priority
     51  1.1.2.2  ad  *	level.
     52  1.1.2.2  ad  *
     53  1.1.2.2  ad  * Priority levels
     54  1.1.2.2  ad  *
     55  1.1.2.2  ad  *	Since soft interrupt dispatch can be tied to the underlying
     56  1.1.2.2  ad  *	architecture's interrupt dispatch code, it may be limited by
     57  1.1.2.2  ad  *	both by the capabilities of the hardware and the capabilities
     58  1.1.2.2  ad  *	of the interrupt dispatch code itself.  Therefore the number of
     59  1.1.2.2  ad  *	levels is restricted to four.  In order of priority (lowest to
     60  1.1.2.2  ad  *	highest) the levels are: clock, bio, net, serial.
     61  1.1.2.2  ad  *
     62  1.1.2.2  ad  *	The symbolic names are provided only as guide and in isolation
     63  1.1.2.2  ad  *	do not have any direct connection with a particular kind of
     64  1.1.2.2  ad  *	device activity.
     65  1.1.2.2  ad  *
     66  1.1.2.2  ad  *	The four priority levels map directly to scheduler priority
     67  1.1.2.2  ad  *	levels, and where the architecture implements 'fast' software
     68  1.1.2.2  ad  *	interrupts, they also map onto interrupt priorities.  The
     69  1.1.2.2  ad  *	interrupt priorities are intended to be hidden from machine
     70  1.1.2.2  ad  *	independent code, which should use multiprocessor and
     71  1.1.2.2  ad  *	preemption aware mechanisms to synchronize with software
     72  1.1.2.2  ad  *	interrupts (for example: mutexes).
     73  1.1.2.2  ad  *
     74  1.1.2.2  ad  * Capabilities
     75  1.1.2.2  ad  *
     76  1.1.2.2  ad  *	As with hardware interrupt handlers, software interrupts run
     77  1.1.2.2  ad  *	with limited machine context.  In particular, they do not
     78  1.1.2.2  ad  *	posess any VM (virtual memory) context, and should therefore
     79  1.1.2.2  ad  *	not try to operate on user space addresses, or to use virtual
     80  1.1.2.2  ad  *	memory facilities other than those noted as interrupt safe.
     81  1.1.2.2  ad  *
     82  1.1.2.2  ad  *	Unlike hardware interrupts, software interrupts do have thread
     83  1.1.2.2  ad  *	context.  They may block on synchronization objects, sleep, and
     84  1.1.2.2  ad  *	resume execution at a later time.  Since software interrupts
     85  1.1.2.2  ad  *	are a limited resource and (typically) run with higher priority
     86  1.1.2.2  ad  *	than all other threads in the system, all block-and-resume
     87  1.1.2.2  ad  *	activity by a software interrupt must be kept short in order to
     88  1.1.2.2  ad  *	allow futher processing at that level to continue.  The kernel
     89  1.1.2.2  ad  *	does not allow software interrupts to use facilities or perform
     90  1.1.2.2  ad  *	actions that may block for a significant amount of time.  This
     91  1.1.2.2  ad  *	means that it's not valid for a software interrupt to: sleep on
     92  1.1.2.2  ad  *	condition variables, use the lockmgr() facility, or wait for
     93  1.1.2.2  ad  *	resources to become available (for example, memory).
     94  1.1.2.2  ad  *
     95  1.1.2.2  ad  *	Software interrupts may block to await ownership of locks,
     96  1.1.2.2  ad  *	which are typically owned only for a short perioid of time:
     97  1.1.2.2  ad  *	mutexes and reader/writer locks.  By extension, code running in
     98  1.1.2.2  ad  *	the bottom half of the kernel must take care to ensure that any
     99  1.1.2.2  ad  *	lock that may be taken from a software interrupt can not be
    100  1.1.2.2  ad  *	held for more than a short period of time.
    101  1.1.2.2  ad  *
    102  1.1.2.2  ad  * Per-CPU operation
    103  1.1.2.2  ad  *
    104  1.1.2.2  ad  *	Soft interrupts are strictly per-CPU.  If a soft interrupt is
    105  1.1.2.2  ad  *	triggered on a CPU, it will only be dispatched on that CPU.
    106  1.1.2.2  ad  *	Each LWP dedicated to handling a soft interrupt is bound to
    107  1.1.2.2  ad  *	it's home CPU, so if the LWP blocks and needs to run again, it
    108  1.1.2.2  ad  *	can only run there.  Nearly all data structures used to manage
    109  1.1.2.2  ad  *	software interrupts are per-CPU.
    110  1.1.2.2  ad  *
    111  1.1.2.2  ad  *	Soft interrupts can occur many thousands of times per second.
    112  1.1.2.2  ad  *	In light of this, the per-CPU requirement is intended to solve
    113  1.1.2.2  ad  *	three problems:
    114  1.1.2.2  ad  *
    115  1.1.2.2  ad  *	1) For passing work down from a hardware interrupt handler to a
    116  1.1.2.2  ad  *	software interrupt (for example, using a queue) spinlocks need
    117  1.1.2.2  ad  *	not be used to guarantee data integrity.  Adjusting the CPU
    118  1.1.2.2  ad  *	local interrupt priority level is sufficient.  Acquiring
    119  1.1.2.2  ad  *	spinlocks is computationally expensive, as it increases traffic
    120  1.1.2.2  ad  *	on the system bus and can stall processors with long execution
    121  1.1.2.2  ad  *	pipelines.
    122  1.1.2.2  ad  *
    123  1.1.2.2  ad  *	2) Often hardware interrupt handlers manipulate data structures
    124  1.1.2.2  ad  *	and then pass those to a software interrupt for further
    125  1.1.2.2  ad  *	processing.  If those data structures are immediately passed to
    126  1.1.2.2  ad  *	another CPU, the associated cache lines may be forced across
    127  1.1.2.2  ad  *	the system bus, generating more bus traffic.
    128  1.1.2.2  ad  *
    129  1.1.2.2  ad  *	3) The data structures used to manage soft interrupts are also
    130  1.1.2.2  ad  *	CPU local, again to reduce unnecessary bus traffic.
    131  1.1.2.2  ad  *
    132  1.1.2.2  ad  * Generic implementation
    133  1.1.2.2  ad  *
    134  1.1.2.2  ad  *	A generic, low performance implementation is provided that
    135  1.1.2.2  ad  *	works across all architectures, with no machine-dependent
    136  1.1.2.2  ad  *	modifications needed.  This implementation uses the scheduler,
    137  1.1.2.2  ad  *	and so has a number of restrictions:
    138  1.1.2.2  ad  *
    139  1.1.2.2  ad  *	1) Since software interrupts can be triggered from any priority
    140  1.1.2.2  ad  *	level, on architectures where the generic implementation is
    141  1.1.2.2  ad  *	used IPL_SCHED must be equal to IPL_HIGH.
    142  1.1.2.2  ad  *
    143  1.1.2.2  ad  *	2) The software interrupts are not preemptive, and so must wait
    144  1.1.2.2  ad  *	for the currently executing thread to yield the CPU.  This
    145  1.1.2.2  ad  *	can introduce latency.
    146  1.1.2.2  ad  *
    147  1.1.2.2  ad  *	3) A context switch is required for each soft interrupt to be
    148  1.1.2.2  ad  *	handled, which can be quite expensive.
    149  1.1.2.2  ad  *
    150  1.1.2.2  ad  * 'Fast' software interrupts
    151  1.1.2.2  ad  *
    152  1.1.2.2  ad  *	XXX
    153  1.1.2.1  ad  *
    154  1.1.2.1  ad  * The !__HAVE_FAST_SOFTINTS case assumes splhigh == splsched.
    155  1.1.2.1  ad  */
    156  1.1.2.1  ad 
    157  1.1.2.1  ad #include <sys/cdefs.h>
    158  1.1.2.6  ad __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.6 2007/07/14 22:09:44 ad Exp $");
    159  1.1.2.1  ad 
    160  1.1.2.1  ad #include <sys/param.h>
    161  1.1.2.1  ad #include <sys/malloc.h>
    162  1.1.2.1  ad #include <sys/proc.h>
    163  1.1.2.1  ad #include <sys/intr.h>
    164  1.1.2.1  ad #include <sys/mutex.h>
    165  1.1.2.1  ad #include <sys/kthread.h>
    166  1.1.2.1  ad #include <sys/evcnt.h>
    167  1.1.2.1  ad #include <sys/cpu.h>
    168  1.1.2.1  ad 
    169  1.1.2.1  ad #include <net/netisr.h>
    170  1.1.2.1  ad 
    171  1.1.2.1  ad #include <uvm/uvm_extern.h>
    172  1.1.2.1  ad 
    173  1.1.2.3  ad #define	PRI_SOFTSERIAL	(PRI_COUNT - 1)
    174  1.1.2.3  ad #define	PRI_SOFTNET	(PRI_SOFTSERIAL - schedppq * 1)
    175  1.1.2.3  ad #define	PRI_SOFTBIO	(PRI_SOFTSERIAL - schedppq * 2)
    176  1.1.2.3  ad #define	PRI_SOFTCLOCK	(PRI_SOFTSERIAL - schedppq * 3)
    177  1.1.2.1  ad 
    178  1.1.2.1  ad /* This could overlap with signal info in struct lwp. */
    179  1.1.2.1  ad typedef struct softint {
    180  1.1.2.1  ad 	TAILQ_HEAD(, softhand)	si_q;
    181  1.1.2.1  ad 	struct lwp		*si_lwp;
    182  1.1.2.1  ad 	struct cpu_info		*si_cpu;
    183  1.1.2.1  ad 	uintptr_t		si_machdep;
    184  1.1.2.1  ad 	struct evcnt		si_evcnt;
    185  1.1.2.1  ad 	int			si_active;
    186  1.1.2.2  ad 	char			si_name[8];
    187  1.1.2.1  ad } softint_t;
    188  1.1.2.1  ad 
    189  1.1.2.1  ad typedef struct softhand {
    190  1.1.2.1  ad 	TAILQ_ENTRY(softhand)	sh_q;
    191  1.1.2.1  ad 	void			(*sh_func)(void *);
    192  1.1.2.1  ad 	void			*sh_arg;
    193  1.1.2.1  ad 	softint_t		*sh_isr;
    194  1.1.2.1  ad 	u_int			sh_pending;
    195  1.1.2.1  ad 	u_int			sh_flags;
    196  1.1.2.1  ad } softhand_t;
    197  1.1.2.1  ad 
    198  1.1.2.1  ad typedef struct softcpu {
    199  1.1.2.1  ad 	struct cpu_info		*sc_cpu;
    200  1.1.2.1  ad 	softint_t		sc_int[SOFTINT_COUNT];
    201  1.1.2.1  ad 	softhand_t		sc_hand[1];
    202  1.1.2.1  ad } softcpu_t;
    203  1.1.2.1  ad 
    204  1.1.2.1  ad static void	softint_thread(void *);
    205  1.1.2.1  ad static void	softint_netisr(void *);
    206  1.1.2.1  ad 
    207  1.1.2.1  ad u_int		softint_bytes = 8192;
    208  1.1.2.6  ad u_int		softint_timing;
    209  1.1.2.1  ad static u_int	softint_max;
    210  1.1.2.1  ad static kmutex_t	softint_lock;
    211  1.1.2.1  ad static void	*softint_netisr_sih;
    212  1.1.2.2  ad struct evcnt	softint_block;
    213  1.1.2.1  ad 
    214  1.1.2.1  ad /*
    215  1.1.2.1  ad  * softint_init_isr:
    216  1.1.2.1  ad  *
    217  1.1.2.1  ad  *	Initialize a single interrupt level for a single CPU.
    218  1.1.2.1  ad  */
    219  1.1.2.1  ad static void
    220  1.1.2.1  ad softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    221  1.1.2.1  ad {
    222  1.1.2.1  ad 	struct cpu_info *ci;
    223  1.1.2.1  ad 	softint_t *si;
    224  1.1.2.1  ad 	int error;
    225  1.1.2.1  ad 
    226  1.1.2.1  ad 	si = &sc->sc_int[level];
    227  1.1.2.1  ad 	ci = sc->sc_cpu;
    228  1.1.2.1  ad 	si->si_cpu = ci;
    229  1.1.2.1  ad 
    230  1.1.2.1  ad 	TAILQ_INIT(&si->si_q);
    231  1.1.2.1  ad 
    232  1.1.2.1  ad 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    233  1.1.2.1  ad 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    234  1.1.2.1  ad 	    "soft%s/%d", desc, (int)ci->ci_cpuid);
    235  1.1.2.1  ad 	if (error != 0)
    236  1.1.2.1  ad 		panic("softint_init_isr: error %d", error);
    237  1.1.2.1  ad 
    238  1.1.2.2  ad 	snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
    239  1.1.2.2  ad 	    (int)ci->ci_cpuid);
    240  1.1.2.1  ad 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
    241  1.1.2.2  ad 	   "softint", si->si_name);
    242  1.1.2.1  ad 
    243  1.1.2.3  ad 	si->si_lwp->l_private = si;
    244  1.1.2.3  ad 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    245  1.1.2.2  ad #ifdef __HAVE_FAST_SOFTINTS
    246  1.1.2.2  ad 	si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
    247  1.1.2.2  ad #endif
    248  1.1.2.1  ad }
    249  1.1.2.1  ad /*
    250  1.1.2.1  ad  * softint_init:
    251  1.1.2.1  ad  *
    252  1.1.2.1  ad  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    253  1.1.2.1  ad  */
    254  1.1.2.1  ad void
    255  1.1.2.1  ad softint_init(struct cpu_info *ci)
    256  1.1.2.1  ad {
    257  1.1.2.1  ad 	static struct cpu_info *first;
    258  1.1.2.1  ad 	softcpu_t *sc, *scfirst;
    259  1.1.2.1  ad 	softhand_t *sh, *shmax;
    260  1.1.2.1  ad 
    261  1.1.2.1  ad 	if (first == NULL) {
    262  1.1.2.2  ad 		/* Boot CPU. */
    263  1.1.2.1  ad 		first = ci;
    264  1.1.2.1  ad 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    265  1.1.2.1  ad 		softint_bytes = round_page(softint_bytes);
    266  1.1.2.1  ad 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    267  1.1.2.1  ad 		    sizeof(softhand_t);
    268  1.1.2.2  ad 		evcnt_attach_dynamic(&softint_block, EVCNT_TYPE_INTR,
    269  1.1.2.2  ad 		    NULL, "softint", "block");
    270  1.1.2.1  ad 	}
    271  1.1.2.1  ad 
    272  1.1.2.1  ad 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    273  1.1.2.1  ad 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    274  1.1.2.1  ad 	if (sc == NULL)
    275  1.1.2.1  ad 		panic("softint_init_cpu: cannot allocate memory");
    276  1.1.2.1  ad 
    277  1.1.2.1  ad 	ci->ci_data.cpu_softcpu = sc;
    278  1.1.2.1  ad 	sc->sc_cpu = ci;
    279  1.1.2.1  ad 
    280  1.1.2.1  ad 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    281  1.1.2.1  ad 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    282  1.1.2.1  ad 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    283  1.1.2.1  ad 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    284  1.1.2.1  ad 
    285  1.1.2.1  ad 	if (first != ci) {
    286  1.1.2.2  ad 		/* Don't lock -- autoconfiguration will prevent reentry. */
    287  1.1.2.1  ad 		scfirst = first->ci_data.cpu_softcpu;
    288  1.1.2.1  ad 		sh = sc->sc_hand;
    289  1.1.2.1  ad 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    290  1.1.2.1  ad 
    291  1.1.2.1  ad 		/* Update pointers for this CPU. */
    292  1.1.2.1  ad 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    293  1.1.2.1  ad 			if (sh->sh_func == NULL)
    294  1.1.2.1  ad 				continue;
    295  1.1.2.1  ad 			sh->sh_isr =
    296  1.1.2.1  ad 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    297  1.1.2.1  ad 		}
    298  1.1.2.1  ad 	} else {
    299  1.1.2.1  ad 		/* Establish a handler for legacy net interrupts. */
    300  1.1.2.1  ad 		softint_netisr_sih = softint_establish(SOFTINT_NET,
    301  1.1.2.1  ad 		    softint_netisr, NULL);
    302  1.1.2.1  ad 		KASSERT(softint_netisr_sih != NULL);
    303  1.1.2.1  ad 	}
    304  1.1.2.1  ad }
    305  1.1.2.1  ad 
    306  1.1.2.1  ad /*
    307  1.1.2.1  ad  * softint_establish:
    308  1.1.2.1  ad  *
    309  1.1.2.1  ad  *	Register a software interrupt handler.
    310  1.1.2.1  ad  */
    311  1.1.2.1  ad void *
    312  1.1.2.1  ad softint_establish(u_int flags, void (*func)(void *), void *arg)
    313  1.1.2.1  ad {
    314  1.1.2.1  ad 	CPU_INFO_ITERATOR cii;
    315  1.1.2.1  ad 	struct cpu_info *ci;
    316  1.1.2.1  ad 	softcpu_t *sc;
    317  1.1.2.1  ad 	softhand_t *sh;
    318  1.1.2.3  ad 	u_int level, index;
    319  1.1.2.1  ad 
    320  1.1.2.1  ad 	level = (flags & SOFTINT_LVLMASK);
    321  1.1.2.1  ad 	KASSERT(level < SOFTINT_COUNT);
    322  1.1.2.1  ad 
    323  1.1.2.1  ad 	mutex_enter(&softint_lock);
    324  1.1.2.1  ad 
    325  1.1.2.1  ad 	/* Find a free slot. */
    326  1.1.2.1  ad 	sc = curcpu()->ci_data.cpu_softcpu;
    327  1.1.2.1  ad 	for (index = 1; index < softint_max; index++)
    328  1.1.2.1  ad 		if (sc->sc_hand[index].sh_func == NULL)
    329  1.1.2.1  ad 			break;
    330  1.1.2.1  ad 	if (index == softint_max) {
    331  1.1.2.1  ad 		mutex_exit(&softint_lock);
    332  1.1.2.1  ad 		printf("WARNING: softint_establish: table full, "
    333  1.1.2.1  ad 		    "increase softint_bytes\n");
    334  1.1.2.1  ad 		return NULL;
    335  1.1.2.1  ad 	}
    336  1.1.2.1  ad 
    337  1.1.2.1  ad 	/* Set up the handler on each CPU. */
    338  1.1.2.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    339  1.1.2.1  ad 		sc = ci->ci_data.cpu_softcpu;
    340  1.1.2.1  ad 		sh = &sc->sc_hand[index];
    341  1.1.2.1  ad 
    342  1.1.2.1  ad 		sh->sh_isr = &sc->sc_int[level];
    343  1.1.2.1  ad 		sh->sh_func = func;
    344  1.1.2.1  ad 		sh->sh_arg = arg;
    345  1.1.2.1  ad 		sh->sh_flags = flags;
    346  1.1.2.1  ad 		sh->sh_pending = 0;
    347  1.1.2.1  ad 	}
    348  1.1.2.1  ad 
    349  1.1.2.1  ad 	mutex_exit(&softint_lock);
    350  1.1.2.1  ad 
    351  1.1.2.3  ad 	return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    352  1.1.2.1  ad }
    353  1.1.2.1  ad 
    354  1.1.2.1  ad /*
    355  1.1.2.1  ad  * softint_disestablish:
    356  1.1.2.1  ad  *
    357  1.1.2.1  ad  *	Unregister a software interrupt handler.
    358  1.1.2.1  ad  */
    359  1.1.2.1  ad void
    360  1.1.2.1  ad softint_disestablish(void *arg)
    361  1.1.2.1  ad {
    362  1.1.2.1  ad 	CPU_INFO_ITERATOR cii;
    363  1.1.2.1  ad 	struct cpu_info *ci;
    364  1.1.2.1  ad 	softcpu_t *sc;
    365  1.1.2.1  ad 	softhand_t *sh;
    366  1.1.2.3  ad 	uintptr_t offset;
    367  1.1.2.1  ad 
    368  1.1.2.3  ad 	offset = (uintptr_t)arg;
    369  1.1.2.3  ad 	KASSERT(offset != 0 && offset < softint_bytes);
    370  1.1.2.1  ad 
    371  1.1.2.1  ad 	mutex_enter(&softint_lock);
    372  1.1.2.1  ad 
    373  1.1.2.1  ad 	/* Set up the handler on each CPU. */
    374  1.1.2.1  ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    375  1.1.2.1  ad 		sc = ci->ci_data.cpu_softcpu;
    376  1.1.2.3  ad 		sh = (softhand_t *)((uint8_t *)sc + offset);
    377  1.1.2.1  ad 		KASSERT(sh->sh_func != NULL);
    378  1.1.2.1  ad 		KASSERT(sh->sh_pending == 0);
    379  1.1.2.1  ad 		sh->sh_func = NULL;
    380  1.1.2.1  ad 	}
    381  1.1.2.1  ad 
    382  1.1.2.1  ad 	mutex_exit(&softint_lock);
    383  1.1.2.1  ad }
    384  1.1.2.1  ad 
    385  1.1.2.1  ad /*
    386  1.1.2.1  ad  * softint_schedule:
    387  1.1.2.1  ad  *
    388  1.1.2.1  ad  *	Trigger a software interrupt.  Must be called from a hardware
    389  1.1.2.1  ad  *	interrupt handler, or with preemption disabled (since we are
    390  1.1.2.1  ad  *	using the value of curcpu()).
    391  1.1.2.1  ad  */
    392  1.1.2.1  ad void
    393  1.1.2.1  ad softint_schedule(void *arg)
    394  1.1.2.1  ad {
    395  1.1.2.1  ad 	softhand_t *sh;
    396  1.1.2.1  ad 	softint_t *si;
    397  1.1.2.3  ad 	uintptr_t offset;
    398  1.1.2.1  ad 	int s;
    399  1.1.2.1  ad 
    400  1.1.2.1  ad 	/* Find the handler record for this CPU. */
    401  1.1.2.3  ad 	offset = (uintptr_t)arg;
    402  1.1.2.3  ad 	KASSERT(offset != 0 && offset < softint_bytes);
    403  1.1.2.3  ad 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    404  1.1.2.1  ad 
    405  1.1.2.1  ad 	/* If it's already pending there's nothing to do. */
    406  1.1.2.1  ad 	if (sh->sh_pending)
    407  1.1.2.1  ad 		return;
    408  1.1.2.1  ad 
    409  1.1.2.1  ad 	/*
    410  1.1.2.1  ad 	 * Enqueue the handler into the LWP's pending list.
    411  1.1.2.1  ad 	 * If the LWP is completely idle, then make it run.
    412  1.1.2.1  ad 	 */
    413  1.1.2.1  ad 	s = splhigh();
    414  1.1.2.1  ad 	if (!sh->sh_pending) {
    415  1.1.2.1  ad 		si = sh->sh_isr;
    416  1.1.2.1  ad 		sh->sh_pending = 1;
    417  1.1.2.1  ad 		TAILQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    418  1.1.2.1  ad 		if (si->si_active == 0) {
    419  1.1.2.1  ad 			si->si_active = 1;
    420  1.1.2.1  ad 			softint_trigger(si->si_machdep);
    421  1.1.2.1  ad 		}
    422  1.1.2.1  ad 	}
    423  1.1.2.1  ad 	splx(s);
    424  1.1.2.1  ad }
    425  1.1.2.1  ad 
    426  1.1.2.1  ad /*
    427  1.1.2.1  ad  * softint_execute:
    428  1.1.2.1  ad  *
    429  1.1.2.1  ad  *	Invoke handlers for the specified soft interrupt.
    430  1.1.2.1  ad  *	Must be entered at splhigh.  Will drop the priority
    431  1.1.2.1  ad  *	to the level specified, but returns back at splhigh.
    432  1.1.2.1  ad  */
    433  1.1.2.3  ad static inline void
    434  1.1.2.3  ad softint_execute(softint_t *si, lwp_t *l, int s)
    435  1.1.2.1  ad {
    436  1.1.2.1  ad 	softhand_t *sh;
    437  1.1.2.3  ad 	lwp_t *l2;
    438  1.1.2.1  ad 
    439  1.1.2.1  ad 	KASSERT(si->si_lwp == curlwp);
    440  1.1.2.1  ad 	KASSERT(si->si_cpu == curcpu());
    441  1.1.2.1  ad 	KASSERT(si->si_lwp->l_wchan == NULL);
    442  1.1.2.1  ad 	KASSERT(!TAILQ_EMPTY(&si->si_q));
    443  1.1.2.1  ad 	KASSERT(si->si_active);
    444  1.1.2.1  ad 
    445  1.1.2.1  ad 	while (!TAILQ_EMPTY(&si->si_q)) {
    446  1.1.2.1  ad 		/*
    447  1.1.2.2  ad 		 * If any interrupted LWP has higher priority then we
    448  1.1.2.2  ad 		 * must yield immediatley.  Note that IPL_HIGH may be
    449  1.1.2.2  ad 		 * above IPL_SCHED, so we have to drop the interrupt
    450  1.1.2.2  ad 		 * priority level before yielding.
    451  1.1.2.2  ad 		 *
    452  1.1.2.2  ad 		 * XXXAD Optimise this away.
    453  1.1.2.2  ad 		 */
    454  1.1.2.3  ad 		for (l2 = l->l_switchto; l2 != NULL; l2 = l2->l_switchto) {
    455  1.1.2.2  ad 			if (lwp_eprio(l2) > l->l_priority)
    456  1.1.2.2  ad 				break;
    457  1.1.2.2  ad 		}
    458  1.1.2.2  ad 		if (l2 != NULL) {
    459  1.1.2.2  ad 			splx(s);
    460  1.1.2.2  ad 			yield();
    461  1.1.2.2  ad 			(void)splhigh();
    462  1.1.2.2  ad 			continue;
    463  1.1.2.2  ad 		}
    464  1.1.2.2  ad 
    465  1.1.2.2  ad 		/*
    466  1.1.2.1  ad 		 * Pick the longest waiting handler to run.  We block
    467  1.1.2.1  ad 		 * interrupts but do not lock in order to do this, as
    468  1.1.2.1  ad 		 * we are protecting against the local CPU only.
    469  1.1.2.1  ad 		 */
    470  1.1.2.1  ad 		sh = TAILQ_FIRST(&si->si_q);
    471  1.1.2.1  ad 		TAILQ_REMOVE(&si->si_q, sh, sh_q);
    472  1.1.2.1  ad 		sh->sh_pending = 0;
    473  1.1.2.1  ad 		splx(s);
    474  1.1.2.1  ad 
    475  1.1.2.1  ad 		/* Run the handler. */
    476  1.1.2.1  ad 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    477  1.1.2.2  ad 			KERNEL_LOCK(1, l);
    478  1.1.2.1  ad 		}
    479  1.1.2.1  ad 		(*sh->sh_func)(sh->sh_arg);
    480  1.1.2.1  ad 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    481  1.1.2.2  ad 			KERNEL_UNLOCK_ONE(l);
    482  1.1.2.1  ad 		}
    483  1.1.2.1  ad 
    484  1.1.2.1  ad 		(void)splhigh();
    485  1.1.2.1  ad 	}
    486  1.1.2.1  ad 
    487  1.1.2.1  ad 	/*
    488  1.1.2.1  ad 	 * Unlocked, but only for statistics.
    489  1.1.2.1  ad 	 * Should be per-CPU to prevent cache ping-pong.
    490  1.1.2.1  ad 	 */
    491  1.1.2.1  ad 	uvmexp.softs++;
    492  1.1.2.1  ad 
    493  1.1.2.1  ad 	si->si_evcnt.ev_count++;
    494  1.1.2.1  ad 	si->si_active = 0;
    495  1.1.2.1  ad }
    496  1.1.2.1  ad 
    497  1.1.2.1  ad /*
    498  1.1.2.1  ad  * schednetisr:
    499  1.1.2.1  ad  *
    500  1.1.2.1  ad  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    501  1.1.2.1  ad  */
    502  1.1.2.1  ad void
    503  1.1.2.1  ad schednetisr(int isr)
    504  1.1.2.1  ad {
    505  1.1.2.1  ad 	int s;
    506  1.1.2.1  ad 
    507  1.1.2.1  ad 	s = splhigh();
    508  1.1.2.1  ad 	curcpu()->ci_data.cpu_netisrs |= (1 << isr);
    509  1.1.2.1  ad 	softint_schedule(softint_netisr_sih);
    510  1.1.2.1  ad 	splx(s);
    511  1.1.2.1  ad }
    512  1.1.2.1  ad 
    513  1.1.2.1  ad /*
    514  1.1.2.1  ad  * softintr_netisr:
    515  1.1.2.1  ad  *
    516  1.1.2.2  ad  *	Dispatch legacy network interrupts.  XXX Needs to go away.
    517  1.1.2.1  ad  */
    518  1.1.2.1  ad static void
    519  1.1.2.1  ad softint_netisr(void *cookie)
    520  1.1.2.1  ad {
    521  1.1.2.1  ad 	struct cpu_info *ci;
    522  1.1.2.1  ad 	int s, bits;
    523  1.1.2.1  ad 
    524  1.1.2.1  ad 	ci = curcpu();
    525  1.1.2.1  ad 
    526  1.1.2.1  ad 	s = splhigh();
    527  1.1.2.1  ad 	bits = ci->ci_data.cpu_netisrs;
    528  1.1.2.1  ad 	ci->ci_data.cpu_netisrs = 0;
    529  1.1.2.1  ad 	splx(s);
    530  1.1.2.1  ad 
    531  1.1.2.1  ad #define	DONETISR(which, func)				\
    532  1.1.2.1  ad 	do {						\
    533  1.1.2.1  ad 		void func(void);			\
    534  1.1.2.1  ad 		if ((bits & (1 << which)) != 0)		\
    535  1.1.2.1  ad 			func();				\
    536  1.1.2.1  ad 	} while(0);
    537  1.1.2.1  ad #include <net/netisr_dispatch.h>
    538  1.1.2.1  ad #undef DONETISR
    539  1.1.2.1  ad }
    540  1.1.2.3  ad 
    541  1.1.2.3  ad #ifndef __HAVE_FAST_SOFTINTS
    542  1.1.2.3  ad 
    543  1.1.2.3  ad /*
    544  1.1.2.3  ad  * softint_init_md:
    545  1.1.2.3  ad  *
    546  1.1.2.6  ad  *	Perform machine-dependent initialization.
    547  1.1.2.3  ad  */
    548  1.1.2.3  ad void
    549  1.1.2.3  ad softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    550  1.1.2.3  ad {
    551  1.1.2.3  ad 	softint_t *si;
    552  1.1.2.3  ad 
    553  1.1.2.3  ad 	*machdep = (lwp_t)l;
    554  1.1.2.3  ad 	si = l->l_private;
    555  1.1.2.3  ad 
    556  1.1.2.3  ad 	lwp_lock(l);
    557  1.1.2.3  ad 	/* Cheat and make the KASSERT in softint_thread() happy. */
    558  1.1.2.3  ad 	si->si_active = 1;
    559  1.1.2.3  ad 	l->l_stat = LSRUN;
    560  1.1.2.3  ad 	sched_enqueue(l, false);
    561  1.1.2.3  ad 	lwp_unlock(l);
    562  1.1.2.3  ad }
    563  1.1.2.3  ad 
    564  1.1.2.3  ad /*
    565  1.1.2.3  ad  * softint_trigger:
    566  1.1.2.3  ad  *
    567  1.1.2.3  ad  *	Cause a soft interrupt handler to begin executing.
    568  1.1.2.3  ad  */
    569  1.1.2.3  ad void
    570  1.1.2.3  ad softint_trigger(uintptr_t machdep)
    571  1.1.2.3  ad {
    572  1.1.2.3  ad 	struct cpu_info *ci;
    573  1.1.2.3  ad 	lwp_t *l;
    574  1.1.2.3  ad 
    575  1.1.2.3  ad 	l = (lwp_t *)machdep;
    576  1.1.2.3  ad 	ci = l->l_cpu;
    577  1.1.2.3  ad 
    578  1.1.2.3  ad 	spc_lock(ci);
    579  1.1.2.3  ad 	l->l_mutex = ci->ci_schedstate.spc_mutex;
    580  1.1.2.3  ad 	l->l_stat = LSRUN;
    581  1.1.2.3  ad 	sched_enqueue(l, false);
    582  1.1.2.3  ad 	cpu_need_resched(ci, 1);
    583  1.1.2.3  ad 	spc_unlock(ci);
    584  1.1.2.3  ad }
    585  1.1.2.3  ad 
    586  1.1.2.3  ad /*
    587  1.1.2.3  ad  * softint_thread:
    588  1.1.2.3  ad  *
    589  1.1.2.6  ad  *	Slow path MI software interrupt dispatch.
    590  1.1.2.3  ad  */
    591  1.1.2.3  ad void
    592  1.1.2.3  ad softint_thread(void *cookie)
    593  1.1.2.3  ad {
    594  1.1.2.3  ad 	softint_t *si;
    595  1.1.2.3  ad 	lwp_t *l;
    596  1.1.2.3  ad 	int s;
    597  1.1.2.3  ad 
    598  1.1.2.3  ad 	l = curlwp;
    599  1.1.2.3  ad 	si = l->l_private;
    600  1.1.2.3  ad 	s = splhigh();
    601  1.1.2.3  ad 
    602  1.1.2.3  ad 	for (;;) {
    603  1.1.2.3  ad 		softint_execute(si, l, s);
    604  1.1.2.3  ad 
    605  1.1.2.3  ad 		lwp_lock(l);
    606  1.1.2.3  ad 		l->l_stat = LSIDL;
    607  1.1.2.3  ad 		mi_switch(l);
    608  1.1.2.3  ad 	}
    609  1.1.2.3  ad }
    610  1.1.2.3  ad 
    611  1.1.2.3  ad #else	/*  !__HAVE_FAST_SOFTINTS */
    612  1.1.2.3  ad 
    613  1.1.2.3  ad /*
    614  1.1.2.3  ad  * softint_thread:
    615  1.1.2.3  ad  *
    616  1.1.2.3  ad  *	In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
    617  1.1.2.3  ad  *	restoring any state, so we should not arrive here - there is a
    618  1.1.2.3  ad  *	direct handoff between the interrupt stub and softint_dispatch().
    619  1.1.2.3  ad  */
    620  1.1.2.3  ad void
    621  1.1.2.3  ad softint_thread(void *cookie)
    622  1.1.2.3  ad {
    623  1.1.2.3  ad 
    624  1.1.2.3  ad 	panic("softint_thread");
    625  1.1.2.3  ad }
    626  1.1.2.3  ad 
    627  1.1.2.3  ad /*
    628  1.1.2.3  ad  * softint_dispatch:
    629  1.1.2.3  ad  *
    630  1.1.2.3  ad  *	Entry point from machine-dependent code.
    631  1.1.2.3  ad  */
    632  1.1.2.3  ad void
    633  1.1.2.3  ad softint_dispatch(lwp_t *pinned, int s)
    634  1.1.2.3  ad {
    635  1.1.2.6  ad 	struct timeval now;
    636  1.1.2.3  ad 	softint_t *si;
    637  1.1.2.6  ad 	u_int timing;
    638  1.1.2.3  ad 	lwp_t *l;
    639  1.1.2.3  ad 
    640  1.1.2.3  ad 	l = curlwp;
    641  1.1.2.3  ad 	si = l->l_private;
    642  1.1.2.3  ad 
    643  1.1.2.3  ad 	/*
    644  1.1.2.3  ad 	 * Note the interrupted LWP, and mark the current LWP as running
    645  1.1.2.3  ad 	 * before proceeding.  Although this must as a rule be done with
    646  1.1.2.3  ad 	 * the LWP locked, at this point no external agents will want to
    647  1.1.2.3  ad 	 * modify the interrupt LWP's state.
    648  1.1.2.3  ad 	 */
    649  1.1.2.6  ad 	timing = (softint_timing ? LW_TIMEINTR : 0);
    650  1.1.2.3  ad 	l->l_switchto = pinned;
    651  1.1.2.3  ad 	l->l_stat = LSONPROC;
    652  1.1.2.6  ad 	l->l_flag |= (LW_RUNNING | timing);
    653  1.1.2.3  ad 
    654  1.1.2.6  ad 	/*
    655  1.1.2.6  ad 	 * Dispatch the interrupt.  If softints are being timed, charge
    656  1.1.2.6  ad 	 * for it.
    657  1.1.2.6  ad 	 */
    658  1.1.2.6  ad 	if (timing)
    659  1.1.2.6  ad 		microtime(&l->l_stime);
    660  1.1.2.3  ad 	softint_execute(si, l, s);
    661  1.1.2.6  ad 	if (timing) {
    662  1.1.2.6  ad 		microtime(&now);
    663  1.1.2.6  ad 		updatertime(l, &now);
    664  1.1.2.6  ad 		l->l_flag &= ~LW_TIMEINTR;
    665  1.1.2.6  ad 	}
    666  1.1.2.3  ad 
    667  1.1.2.3  ad 	/*
    668  1.1.2.6  ad 	 * If we blocked while handling the interrupt, the pinned LWP is
    669  1.1.2.6  ad 	 * gone so switch to the idle LWP.  It will select a new LWP to
    670  1.1.2.6  ad 	 * run.
    671  1.1.2.3  ad 	 *
    672  1.1.2.5  ad 	 * We must drop the priority level as switching at IPL_HIGH could
    673  1.1.2.5  ad 	 * deadlock the system.  We have already set si->si_active = 0,
    674  1.1.2.5  ad 	 * which means another interrupt at this level can be triggered.
    675  1.1.2.5  ad 	 * That's not be a problem: we are lowering to level 's' which will
    676  1.1.2.6  ad 	 * prevent softint_dispatch() from being reentered at level 's',
    677  1.1.2.6  ad 	 * until the priority is finally dropped to IPL_NONE on entry to
    678  1.1.2.6  ad 	 * the idle loop.
    679  1.1.2.3  ad 	 */
    680  1.1.2.4  ad 	l->l_stat = LSIDL;
    681  1.1.2.3  ad 	if (l->l_switchto == NULL) {
    682  1.1.2.3  ad 		splx(s);
    683  1.1.2.3  ad 		lwp_exit_switchaway(l);
    684  1.1.2.3  ad 		/* NOTREACHED */
    685  1.1.2.3  ad 	}
    686  1.1.2.3  ad 	l->l_switchto = NULL;
    687  1.1.2.3  ad 	l->l_flag &= ~LW_RUNNING;
    688  1.1.2.3  ad }
    689  1.1.2.3  ad 
    690  1.1.2.3  ad #endif	/* !__HAVE_FAST_SOFTINTS */
    691