Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.66
      1  1.66        ad /*	$NetBSD: kern_softint.c,v 1.66 2020/05/17 14:11:30 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.58        ad  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.5        ad  * Generic software interrupt framework.
     34   1.5        ad  *
     35   1.5        ad  * Overview
     36   1.5        ad  *
     37   1.5        ad  *	The soft interrupt framework provides a mechanism to schedule a
     38   1.5        ad  *	low priority callback that runs with thread context.  It allows
     39   1.5        ad  *	for dynamic registration of software interrupts, and for fair
     40   1.5        ad  *	queueing and prioritization of those interrupts.  The callbacks
     41   1.5        ad  *	can be scheduled to run from nearly any point in the kernel: by
     42   1.5        ad  *	code running with thread context, by code running from a
     43   1.5        ad  *	hardware interrupt handler, and at any interrupt priority
     44   1.5        ad  *	level.
     45   1.5        ad  *
     46   1.5        ad  * Priority levels
     47   1.5        ad  *
     48   1.5        ad  *	Since soft interrupt dispatch can be tied to the underlying
     49   1.5        ad  *	architecture's interrupt dispatch code, it can be limited
     50   1.5        ad  *	both by the capabilities of the hardware and the capabilities
     51   1.5        ad  *	of the interrupt dispatch code itself.  The number of priority
     52   1.5        ad  *	levels is restricted to four.  In order of priority (lowest to
     53   1.5        ad  *	highest) the levels are: clock, bio, net, serial.
     54   1.5        ad  *
     55   1.5        ad  *	The names are symbolic and in isolation do not have any direct
     56   1.5        ad  *	connection with a particular kind of device activity: they are
     57   1.5        ad  *	only meant as a guide.
     58   1.5        ad  *
     59   1.5        ad  *	The four priority levels map directly to scheduler priority
     60   1.5        ad  *	levels, and where the architecture implements 'fast' software
     61   1.5        ad  *	interrupts, they also map onto interrupt priorities.  The
     62   1.5        ad  *	interrupt priorities are intended to be hidden from machine
     63   1.5        ad  *	independent code, which should use thread-safe mechanisms to
     64   1.5        ad  *	synchronize with software interrupts (for example: mutexes).
     65   1.5        ad  *
     66   1.5        ad  * Capabilities
     67   1.5        ad  *
     68   1.5        ad  *	Software interrupts run with limited machine context.  In
     69   1.5        ad  *	particular, they do not posess any address space context.  They
     70   1.5        ad  *	should not try to operate on user space addresses, or to use
     71   1.5        ad  *	virtual memory facilities other than those noted as interrupt
     72   1.5        ad  *	safe.
     73   1.5        ad  *
     74   1.5        ad  *	Unlike hardware interrupts, software interrupts do have thread
     75   1.5        ad  *	context.  They may block on synchronization objects, sleep, and
     76   1.5        ad  *	resume execution at a later time.
     77   1.5        ad  *
     78   1.5        ad  *	Since software interrupts are a limited resource and run with
     79   1.5        ad  *	higher priority than most other LWPs in the system, all
     80   1.5        ad  *	block-and-resume activity by a software interrupt must be kept
     81   1.5        ad  *	short to allow futher processing at that level to continue.  By
     82   1.5        ad  *	extension, code running with process context must take care to
     83   1.5        ad  *	ensure that any lock that may be taken from a software interrupt
     84   1.5        ad  *	can not be held for more than a short period of time.
     85   1.5        ad  *
     86   1.5        ad  *	The kernel does not allow software interrupts to use facilities
     87   1.5        ad  *	or perform actions that may block for a significant amount of
     88   1.5        ad  *	time.  This means that it's not valid for a software interrupt
     89  1.10        ad  *	to sleep on condition variables	or wait for resources to become
     90  1.10        ad  *	available (for example,	memory).
     91   1.5        ad  *
     92   1.5        ad  * Per-CPU operation
     93   1.5        ad  *
     94   1.5        ad  *	If a soft interrupt is triggered on a CPU, it can only be
     95   1.5        ad  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96   1.5        ad  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97   1.5        ad  *	and needs to run again, it can only run there.  Nearly all data
     98   1.5        ad  *	structures used to manage software interrupts are per-CPU.
     99   1.5        ad  *
    100   1.5        ad  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101   1.5        ad  *	cache lines between CPUs: lines occupied by data structures
    102   1.5        ad  *	used to manage the soft interrupts, and lines occupied by data
    103   1.5        ad  *	items being passed down to the soft interrupt.  As a positive
    104   1.5        ad  *	side effect, this also means that the soft interrupt dispatch
    105   1.5        ad  *	code does not need to to use spinlocks to synchronize.
    106   1.5        ad  *
    107   1.5        ad  * Generic implementation
    108   1.5        ad  *
    109   1.5        ad  *	A generic, low performance implementation is provided that
    110   1.5        ad  *	works across all architectures, with no machine-dependent
    111   1.5        ad  *	modifications needed.  This implementation uses the scheduler,
    112   1.5        ad  *	and so has a number of restrictions:
    113   1.5        ad  *
    114   1.5        ad  *	1) The software interrupts are not currently preemptive, so
    115  1.65     skrll  *	must wait for the currently executing LWP to yield the CPU.
    116   1.5        ad  *	This can introduce latency.
    117   1.5        ad  *
    118   1.5        ad  *	2) An expensive context switch is required for a software
    119   1.5        ad  *	interrupt to be handled.
    120   1.5        ad  *
    121   1.5        ad  * 'Fast' software interrupts
    122   1.5        ad  *
    123   1.5        ad  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124   1.5        ad  *	the fast mechanism.  Threads running either in the kernel or in
    125   1.5        ad  *	userspace will be interrupted, but will not be preempted.  When
    126   1.5        ad  *	the soft interrupt completes execution, the interrupted LWP
    127   1.5        ad  *	is resumed.  Interrupt dispatch code must provide the minimum
    128   1.5        ad  *	level of context necessary for the soft interrupt to block and
    129   1.5        ad  *	be resumed at a later time.  The machine-dependent dispatch
    130   1.5        ad  *	path looks something like the following:
    131   1.5        ad  *
    132   1.5        ad  *	softintr()
    133   1.5        ad  *	{
    134   1.5        ad  *		go to IPL_HIGH if necessary for switch;
    135   1.5        ad  *		save any necessary registers in a format that can be
    136   1.5        ad  *		    restored by cpu_switchto if the softint blocks;
    137   1.5        ad  *		arrange for cpu_switchto() to restore into the
    138   1.5        ad  *		    trampoline function;
    139   1.5        ad  *		identify LWP to handle this interrupt;
    140   1.5        ad  *		switch to the LWP's stack;
    141   1.5        ad  *		switch register stacks, if necessary;
    142   1.5        ad  *		assign new value of curlwp;
    143   1.5        ad  *		call MI softint_dispatch, passing old curlwp and IPL
    144   1.5        ad  *		    to execute interrupt at;
    145   1.5        ad  *		switch back to old stack;
    146   1.5        ad  *		switch back to old register stack, if necessary;
    147   1.5        ad  *		restore curlwp;
    148   1.5        ad  *		return to interrupted LWP;
    149   1.5        ad  *	}
    150   1.5        ad  *
    151   1.5        ad  *	If the soft interrupt blocks, a trampoline function is returned
    152   1.5        ad  *	to in the context of the interrupted LWP, as arranged for by
    153   1.5        ad  *	softint():
    154   1.5        ad  *
    155   1.5        ad  *	softint_ret()
    156   1.5        ad  *	{
    157   1.5        ad  *		unlock soft interrupt LWP;
    158   1.5        ad  *		resume interrupt processing, likely returning to
    159   1.5        ad  *		    interrupted LWP or dispatching another, different
    160   1.5        ad  *		    interrupt;
    161   1.5        ad  *	}
    162   1.5        ad  *
    163   1.5        ad  *	Once the soft interrupt has fired (and even if it has blocked),
    164   1.5        ad  *	no further soft interrupts at that level will be triggered by
    165  1.65     skrll  *	MI code until the soft interrupt handler has ceased execution.
    166   1.5        ad  *	If a soft interrupt handler blocks and is resumed, it resumes
    167   1.5        ad  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168   1.5        ad  *	when it has completed and is ready to fire again will it
    169   1.5        ad  *	interrupt other threads.
    170   1.2        ad  */
    171   1.2        ad 
    172   1.2        ad #include <sys/cdefs.h>
    173  1.66        ad __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.66 2020/05/17 14:11:30 ad Exp $");
    174   1.2        ad 
    175   1.2        ad #include <sys/param.h>
    176   1.5        ad #include <sys/proc.h>
    177   1.2        ad #include <sys/intr.h>
    178  1.41     rmind #include <sys/ipi.h>
    179  1.61        ad #include <sys/lock.h>
    180   1.5        ad #include <sys/mutex.h>
    181  1.45   msaitoh #include <sys/kernel.h>
    182   1.5        ad #include <sys/kthread.h>
    183   1.5        ad #include <sys/evcnt.h>
    184   1.5        ad #include <sys/cpu.h>
    185  1.24        ad #include <sys/xcall.h>
    186   1.5        ad 
    187   1.5        ad #include <net/netisr.h>
    188   1.5        ad 
    189   1.5        ad #include <uvm/uvm_extern.h>
    190   1.5        ad 
    191   1.5        ad /* This could overlap with signal info in struct lwp. */
    192   1.5        ad typedef struct softint {
    193   1.5        ad 	SIMPLEQ_HEAD(, softhand) si_q;
    194   1.5        ad 	struct lwp		*si_lwp;
    195   1.5        ad 	struct cpu_info		*si_cpu;
    196   1.5        ad 	uintptr_t		si_machdep;
    197   1.5        ad 	struct evcnt		si_evcnt;
    198   1.5        ad 	struct evcnt		si_evcnt_block;
    199  1.63        ad 	volatile int		si_active;
    200  1.66        ad 	int			si_ipl;
    201   1.5        ad 	char			si_name[8];
    202   1.5        ad 	char			si_name_block[8+6];
    203   1.5        ad } softint_t;
    204   1.5        ad 
    205   1.5        ad typedef struct softhand {
    206   1.5        ad 	SIMPLEQ_ENTRY(softhand)	sh_q;
    207   1.5        ad 	void			(*sh_func)(void *);
    208   1.5        ad 	void			*sh_arg;
    209   1.5        ad 	softint_t		*sh_isr;
    210  1.28    bouyer 	u_int			sh_flags;
    211  1.41     rmind 	u_int			sh_ipi_id;
    212   1.5        ad } softhand_t;
    213   1.5        ad 
    214   1.5        ad typedef struct softcpu {
    215   1.5        ad 	struct cpu_info		*sc_cpu;
    216   1.5        ad 	softint_t		sc_int[SOFTINT_COUNT];
    217   1.5        ad 	softhand_t		sc_hand[1];
    218   1.5        ad } softcpu_t;
    219   1.5        ad 
    220   1.5        ad static void	softint_thread(void *);
    221   1.5        ad 
    222  1.44   msaitoh u_int		softint_bytes = 32768;
    223   1.5        ad u_int		softint_timing;
    224   1.5        ad static u_int	softint_max;
    225   1.5        ad static kmutex_t	softint_lock;
    226  1.23     pooka static void	*softint_netisrs[NETISR_MAX];
    227   1.2        ad 
    228   1.5        ad /*
    229   1.5        ad  * softint_init_isr:
    230   1.5        ad  *
    231   1.5        ad  *	Initialize a single interrupt level for a single CPU.
    232   1.5        ad  */
    233   1.5        ad static void
    234  1.66        ad softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
    235  1.66        ad     int ipl)
    236   1.5        ad {
    237   1.5        ad 	struct cpu_info *ci;
    238   1.5        ad 	softint_t *si;
    239   1.5        ad 	int error;
    240   1.5        ad 
    241   1.5        ad 	si = &sc->sc_int[level];
    242   1.5        ad 	ci = sc->sc_cpu;
    243   1.5        ad 	si->si_cpu = ci;
    244   1.5        ad 
    245   1.5        ad 	SIMPLEQ_INIT(&si->si_q);
    246   1.5        ad 
    247   1.5        ad 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    248   1.5        ad 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    249  1.12    martin 	    "soft%s/%u", desc, ci->ci_index);
    250   1.5        ad 	if (error != 0)
    251   1.5        ad 		panic("softint_init_isr: error %d", error);
    252   1.5        ad 
    253  1.12    martin 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    254  1.12    martin 	    ci->ci_index);
    255  1.20        ad 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    256   1.5        ad 	   "softint", si->si_name);
    257  1.12    martin 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    258  1.12    martin 	    desc, ci->ci_index);
    259  1.20        ad 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    260   1.5        ad 	   "softint", si->si_name_block);
    261   1.3        ad 
    262  1.66        ad 	si->si_ipl = ipl;
    263   1.5        ad 	si->si_lwp->l_private = si;
    264   1.5        ad 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    265   1.5        ad }
    266  1.37  uebayasi 
    267   1.2        ad /*
    268   1.2        ad  * softint_init:
    269   1.2        ad  *
    270   1.2        ad  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    271   1.2        ad  */
    272   1.2        ad void
    273   1.2        ad softint_init(struct cpu_info *ci)
    274   1.2        ad {
    275   1.5        ad 	static struct cpu_info *first;
    276   1.5        ad 	softcpu_t *sc, *scfirst;
    277   1.5        ad 	softhand_t *sh, *shmax;
    278   1.5        ad 
    279   1.5        ad 	if (first == NULL) {
    280   1.5        ad 		/* Boot CPU. */
    281   1.5        ad 		first = ci;
    282   1.5        ad 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    283   1.5        ad 		softint_bytes = round_page(softint_bytes);
    284   1.5        ad 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    285   1.5        ad 		    sizeof(softhand_t);
    286   1.5        ad 	}
    287   1.2        ad 
    288  1.37  uebayasi 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    289  1.37  uebayasi 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    290  1.37  uebayasi 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    291   1.5        ad 	if (sc == NULL)
    292   1.5        ad 		panic("softint_init_cpu: cannot allocate memory");
    293   1.5        ad 
    294   1.5        ad 	ci->ci_data.cpu_softcpu = sc;
    295   1.5        ad 	ci->ci_data.cpu_softints = 0;
    296   1.5        ad 	sc->sc_cpu = ci;
    297   1.5        ad 
    298  1.66        ad 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
    299  1.66        ad 	    IPL_SOFTNET);
    300  1.66        ad 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
    301  1.66        ad 	    IPL_SOFTBIO);
    302  1.66        ad 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
    303  1.66        ad 	    IPL_SOFTCLOCK);
    304  1.66        ad 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
    305  1.66        ad 	    IPL_SOFTSERIAL);
    306   1.5        ad 
    307   1.5        ad 	if (first != ci) {
    308   1.5        ad 		mutex_enter(&softint_lock);
    309   1.5        ad 		scfirst = first->ci_data.cpu_softcpu;
    310   1.5        ad 		sh = sc->sc_hand;
    311   1.5        ad 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    312   1.5        ad 		/* Update pointers for this CPU. */
    313   1.5        ad 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    314   1.5        ad 			if (sh->sh_func == NULL)
    315   1.5        ad 				continue;
    316   1.5        ad 			sh->sh_isr =
    317   1.5        ad 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    318   1.5        ad 		}
    319   1.5        ad 		mutex_exit(&softint_lock);
    320   1.5        ad 	} else {
    321   1.5        ad 		/*
    322   1.5        ad 		 * Establish handlers for legacy net interrupts.
    323   1.5        ad 		 * XXX Needs to go away.
    324   1.5        ad 		 */
    325   1.5        ad #define DONETISR(n, f)							\
    326  1.16        ad     softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
    327  1.16        ad         (void (*)(void *))(f), NULL)
    328   1.5        ad #include <net/netisr_dispatch.h>
    329   1.5        ad 	}
    330   1.2        ad }
    331   1.2        ad 
    332   1.2        ad /*
    333   1.2        ad  * softint_establish:
    334   1.2        ad  *
    335   1.2        ad  *	Register a software interrupt handler.
    336   1.2        ad  */
    337   1.2        ad void *
    338   1.2        ad softint_establish(u_int flags, void (*func)(void *), void *arg)
    339   1.2        ad {
    340   1.5        ad 	CPU_INFO_ITERATOR cii;
    341   1.5        ad 	struct cpu_info *ci;
    342   1.5        ad 	softcpu_t *sc;
    343   1.5        ad 	softhand_t *sh;
    344   1.5        ad 	u_int level, index;
    345  1.41     rmind 	u_int ipi_id = 0;
    346  1.41     rmind 	void *sih;
    347   1.2        ad 
    348   1.2        ad 	level = (flags & SOFTINT_LVLMASK);
    349   1.2        ad 	KASSERT(level < SOFTINT_COUNT);
    350  1.24        ad 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    351   1.2        ad 
    352   1.5        ad 	mutex_enter(&softint_lock);
    353   1.5        ad 
    354   1.5        ad 	/* Find a free slot. */
    355   1.5        ad 	sc = curcpu()->ci_data.cpu_softcpu;
    356  1.32      matt 	for (index = 1; index < softint_max; index++) {
    357   1.5        ad 		if (sc->sc_hand[index].sh_func == NULL)
    358   1.5        ad 			break;
    359  1.32      matt 	}
    360   1.5        ad 	if (index == softint_max) {
    361   1.5        ad 		mutex_exit(&softint_lock);
    362   1.5        ad 		printf("WARNING: softint_establish: table full, "
    363   1.5        ad 		    "increase softint_bytes\n");
    364   1.5        ad 		return NULL;
    365   1.5        ad 	}
    366  1.41     rmind 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    367  1.41     rmind 
    368  1.41     rmind 	if (flags & SOFTINT_RCPU) {
    369  1.41     rmind 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    370  1.41     rmind 			mutex_exit(&softint_lock);
    371  1.41     rmind 			return NULL;
    372  1.41     rmind 		}
    373  1.41     rmind 	}
    374   1.5        ad 
    375   1.5        ad 	/* Set up the handler on each CPU. */
    376   1.8        ad 	if (ncpu < 2) {
    377   1.7        ad 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    378   1.7        ad 		sc = curcpu()->ci_data.cpu_softcpu;
    379   1.7        ad 		sh = &sc->sc_hand[index];
    380   1.7        ad 		sh->sh_isr = &sc->sc_int[level];
    381   1.7        ad 		sh->sh_func = func;
    382   1.7        ad 		sh->sh_arg = arg;
    383   1.7        ad 		sh->sh_flags = flags;
    384  1.41     rmind 		sh->sh_ipi_id = ipi_id;
    385   1.7        ad 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    386   1.5        ad 		sc = ci->ci_data.cpu_softcpu;
    387   1.5        ad 		sh = &sc->sc_hand[index];
    388   1.5        ad 		sh->sh_isr = &sc->sc_int[level];
    389   1.5        ad 		sh->sh_func = func;
    390   1.5        ad 		sh->sh_arg = arg;
    391   1.5        ad 		sh->sh_flags = flags;
    392  1.41     rmind 		sh->sh_ipi_id = ipi_id;
    393   1.2        ad 	}
    394   1.5        ad 	mutex_exit(&softint_lock);
    395   1.5        ad 
    396  1.41     rmind 	return sih;
    397   1.2        ad }
    398   1.2        ad 
    399   1.2        ad /*
    400   1.2        ad  * softint_disestablish:
    401   1.2        ad  *
    402  1.24        ad  *	Unregister a software interrupt handler.  The soft interrupt could
    403  1.24        ad  *	still be active at this point, but the caller commits not to try
    404  1.24        ad  *	and trigger it again once this call is made.  The caller must not
    405  1.24        ad  *	hold any locks that could be taken from soft interrupt context,
    406  1.24        ad  *	because we will wait for the softint to complete if it's still
    407  1.24        ad  *	running.
    408   1.2        ad  */
    409   1.2        ad void
    410   1.2        ad softint_disestablish(void *arg)
    411   1.2        ad {
    412   1.5        ad 	CPU_INFO_ITERATOR cii;
    413   1.5        ad 	struct cpu_info *ci;
    414   1.5        ad 	softcpu_t *sc;
    415   1.5        ad 	softhand_t *sh;
    416   1.5        ad 	uintptr_t offset;
    417   1.5        ad 
    418   1.5        ad 	offset = (uintptr_t)arg;
    419  1.40      matt 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    420  1.40      matt 	    offset, softint_bytes);
    421   1.5        ad 
    422  1.24        ad 	/*
    423  1.66        ad 	 * Unregister IPI handler if there is any.  Note: there is no need
    424  1.66        ad 	 * to disable preemption here - ID is stable.
    425  1.41     rmind 	 */
    426  1.41     rmind 	sc = curcpu()->ci_data.cpu_softcpu;
    427  1.41     rmind 	sh = (softhand_t *)((uint8_t *)sc + offset);
    428  1.41     rmind 	if (sh->sh_ipi_id) {
    429  1.41     rmind 		ipi_unregister(sh->sh_ipi_id);
    430  1.41     rmind 	}
    431  1.41     rmind 
    432  1.41     rmind 	/*
    433  1.66        ad 	 * Run a dummy softint at the same level on all CPUs and wait for
    434  1.66        ad 	 * completion, to make sure this softint is no longer running
    435  1.66        ad 	 * anywhere.
    436  1.24        ad 	 */
    437  1.66        ad 	xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
    438   1.5        ad 
    439   1.5        ad 	/* Clear the handler on each CPU. */
    440  1.24        ad 	mutex_enter(&softint_lock);
    441   1.5        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    442   1.5        ad 		sc = ci->ci_data.cpu_softcpu;
    443   1.5        ad 		sh = (softhand_t *)((uint8_t *)sc + offset);
    444   1.5        ad 		KASSERT(sh->sh_func != NULL);
    445   1.5        ad 		sh->sh_func = NULL;
    446   1.5        ad 	}
    447   1.5        ad 	mutex_exit(&softint_lock);
    448   1.2        ad }
    449   1.2        ad 
    450   1.2        ad /*
    451   1.2        ad  * softint_schedule:
    452   1.2        ad  *
    453   1.2        ad  *	Trigger a software interrupt.  Must be called from a hardware
    454   1.2        ad  *	interrupt handler, or with preemption disabled (since we are
    455   1.2        ad  *	using the value of curcpu()).
    456   1.2        ad  */
    457   1.2        ad void
    458   1.2        ad softint_schedule(void *arg)
    459   1.2        ad {
    460   1.5        ad 	softhand_t *sh;
    461   1.5        ad 	softint_t *si;
    462   1.5        ad 	uintptr_t offset;
    463   1.5        ad 	int s;
    464   1.5        ad 
    465  1.64        ad 	/*
    466  1.64        ad 	 * If this assert fires, rather than disabling preemption explicitly
    467  1.64        ad 	 * to make it stop, consider that you are probably using a softint
    468  1.64        ad 	 * when you don't need to.
    469  1.65     skrll 	 */
    470  1.17        ad 	KASSERT(kpreempt_disabled());
    471  1.17        ad 
    472   1.5        ad 	/* Find the handler record for this CPU. */
    473   1.5        ad 	offset = (uintptr_t)arg;
    474  1.40      matt 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    475  1.40      matt 	    offset, softint_bytes);
    476   1.5        ad 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    477   1.5        ad 
    478   1.5        ad 	/* If it's already pending there's nothing to do. */
    479  1.32      matt 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    480   1.5        ad 		return;
    481  1.32      matt 	}
    482   1.5        ad 
    483   1.5        ad 	/*
    484   1.5        ad 	 * Enqueue the handler into the LWP's pending list.
    485   1.5        ad 	 * If the LWP is completely idle, then make it run.
    486   1.5        ad 	 */
    487   1.5        ad 	s = splhigh();
    488  1.24        ad 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    489   1.5        ad 		si = sh->sh_isr;
    490  1.24        ad 		sh->sh_flags |= SOFTINT_PENDING;
    491   1.5        ad 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    492   1.5        ad 		if (si->si_active == 0) {
    493   1.5        ad 			si->si_active = 1;
    494   1.5        ad 			softint_trigger(si->si_machdep);
    495   1.5        ad 		}
    496   1.5        ad 	}
    497   1.5        ad 	splx(s);
    498   1.5        ad }
    499   1.5        ad 
    500   1.5        ad /*
    501  1.41     rmind  * softint_schedule_cpu:
    502  1.41     rmind  *
    503  1.41     rmind  *	Trigger a software interrupt on a target CPU.  This invokes
    504  1.41     rmind  *	softint_schedule() for the local CPU or send an IPI to invoke
    505  1.41     rmind  *	this routine on the remote CPU.  Preemption must be disabled.
    506  1.41     rmind  */
    507  1.41     rmind void
    508  1.41     rmind softint_schedule_cpu(void *arg, struct cpu_info *ci)
    509  1.41     rmind {
    510  1.41     rmind 	KASSERT(kpreempt_disabled());
    511  1.41     rmind 
    512  1.41     rmind 	if (curcpu() != ci) {
    513  1.41     rmind 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    514  1.41     rmind 		const uintptr_t offset = (uintptr_t)arg;
    515  1.41     rmind 		const softhand_t *sh;
    516  1.41     rmind 
    517  1.41     rmind 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    518  1.41     rmind 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    519  1.41     rmind 		ipi_trigger(sh->sh_ipi_id, ci);
    520  1.41     rmind 		return;
    521  1.41     rmind 	}
    522  1.41     rmind 
    523  1.41     rmind 	/* Just a local CPU. */
    524  1.41     rmind 	softint_schedule(arg);
    525  1.41     rmind }
    526  1.41     rmind 
    527  1.41     rmind /*
    528   1.5        ad  * softint_execute:
    529   1.5        ad  *
    530   1.5        ad  *	Invoke handlers for the specified soft interrupt.
    531   1.5        ad  *	Must be entered at splhigh.  Will drop the priority
    532   1.5        ad  *	to the level specified, but returns back at splhigh.
    533   1.5        ad  */
    534   1.5        ad static inline void
    535  1.66        ad softint_execute(lwp_t *l, int s)
    536   1.5        ad {
    537  1.66        ad 	softint_t *si = l->l_private;
    538   1.5        ad 	softhand_t *sh;
    539   1.5        ad 
    540   1.5        ad 	KASSERT(si->si_lwp == curlwp);
    541   1.5        ad 	KASSERT(si->si_cpu == curcpu());
    542   1.5        ad 	KASSERT(si->si_lwp->l_wchan == NULL);
    543   1.5        ad 	KASSERT(si->si_active);
    544   1.5        ad 
    545   1.5        ad 	/*
    546   1.5        ad 	 * Note: due to priority inheritance we may have interrupted a
    547   1.5        ad 	 * higher priority LWP.  Since the soft interrupt must be quick
    548   1.5        ad 	 * and is non-preemptable, we don't bother yielding.
    549   1.5        ad 	 */
    550   1.5        ad 
    551   1.5        ad 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    552   1.5        ad 		/*
    553   1.5        ad 		 * Pick the longest waiting handler to run.  We block
    554   1.5        ad 		 * interrupts but do not lock in order to do this, as
    555   1.5        ad 		 * we are protecting against the local CPU only.
    556   1.5        ad 		 */
    557   1.5        ad 		sh = SIMPLEQ_FIRST(&si->si_q);
    558   1.5        ad 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    559  1.24        ad 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    560  1.66        ad 		sh->sh_flags ^= SOFTINT_PENDING;
    561   1.5        ad 		splx(s);
    562   1.5        ad 
    563   1.5        ad 		/* Run the handler. */
    564  1.58        ad 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
    565  1.58        ad 			(*sh->sh_func)(sh->sh_arg);
    566  1.58        ad 		} else {
    567   1.5        ad 			KERNEL_LOCK(1, l);
    568  1.58        ad 			(*sh->sh_func)(sh->sh_arg);
    569  1.58        ad 			KERNEL_UNLOCK_ONE(l);
    570   1.5        ad 		}
    571  1.65     skrll 
    572  1.34     rmind 		/* Diagnostic: check that spin-locks have not leaked. */
    573  1.34     rmind 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    574  1.38       jym 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    575  1.38       jym 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    576  1.46     ozaki 		/* Diagnostic: check that psrefs have not leaked. */
    577  1.46     ozaki 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    578  1.46     ozaki 		    __func__, l->l_psrefs, sh->sh_func);
    579  1.41     rmind 
    580   1.5        ad 		(void)splhigh();
    581   1.5        ad 	}
    582   1.2        ad 
    583  1.47     ozaki 	PSREF_DEBUG_BARRIER();
    584  1.47     ozaki 
    585  1.56        ad 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
    586   1.5        ad 
    587  1.13        ad 	KASSERT(si->si_cpu == curcpu());
    588  1.13        ad 	KASSERT(si->si_lwp->l_wchan == NULL);
    589  1.13        ad 	KASSERT(si->si_active);
    590   1.5        ad 	si->si_evcnt.ev_count++;
    591   1.5        ad 	si->si_active = 0;
    592   1.2        ad }
    593   1.2        ad 
    594   1.2        ad /*
    595   1.2        ad  * softint_block:
    596   1.2        ad  *
    597   1.2        ad  *	Update statistics when the soft interrupt blocks.
    598   1.2        ad  */
    599   1.2        ad void
    600   1.2        ad softint_block(lwp_t *l)
    601   1.2        ad {
    602   1.5        ad 	softint_t *si = l->l_private;
    603   1.5        ad 
    604   1.5        ad 	KASSERT((l->l_pflag & LP_INTR) != 0);
    605   1.5        ad 	si->si_evcnt_block.ev_count++;
    606   1.5        ad }
    607   1.5        ad 
    608   1.5        ad /*
    609   1.5        ad  * schednetisr:
    610   1.5        ad  *
    611   1.5        ad  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    612   1.5        ad  */
    613   1.5        ad void
    614   1.5        ad schednetisr(int isr)
    615   1.5        ad {
    616   1.5        ad 
    617   1.5        ad 	softint_schedule(softint_netisrs[isr]);
    618   1.5        ad }
    619   1.5        ad 
    620   1.5        ad #ifndef __HAVE_FAST_SOFTINTS
    621   1.5        ad 
    622  1.19        ad #ifdef __HAVE_PREEMPTION
    623  1.19        ad #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    624  1.17        ad #endif
    625  1.17        ad 
    626   1.5        ad /*
    627   1.5        ad  * softint_init_md:
    628   1.5        ad  *
    629   1.5        ad  *	Slow path: perform machine-dependent initialization.
    630   1.5        ad  */
    631   1.5        ad void
    632   1.5        ad softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    633   1.5        ad {
    634  1.50        ad 	struct proc *p;
    635   1.5        ad 	softint_t *si;
    636   1.5        ad 
    637   1.5        ad 	*machdep = (1 << level);
    638   1.5        ad 	si = l->l_private;
    639  1.50        ad 	p = l->l_proc;
    640   1.5        ad 
    641  1.50        ad 	mutex_enter(p->p_lock);
    642   1.5        ad 	lwp_lock(l);
    643   1.5        ad 	/* Cheat and make the KASSERT in softint_thread() happy. */
    644   1.5        ad 	si->si_active = 1;
    645  1.50        ad 	setrunnable(l);
    646  1.50        ad 	/* LWP now unlocked */
    647  1.50        ad 	mutex_exit(p->p_lock);
    648   1.5        ad }
    649   1.5        ad 
    650   1.5        ad /*
    651   1.5        ad  * softint_trigger:
    652   1.5        ad  *
    653   1.5        ad  *	Slow path: cause a soft interrupt handler to begin executing.
    654   1.5        ad  *	Called at IPL_HIGH.
    655   1.5        ad  */
    656   1.5        ad void
    657   1.5        ad softint_trigger(uintptr_t machdep)
    658   1.5        ad {
    659   1.5        ad 	struct cpu_info *ci;
    660   1.5        ad 	lwp_t *l;
    661   1.2        ad 
    662  1.51        ad 	ci = curcpu();
    663   1.5        ad 	ci->ci_data.cpu_softints |= machdep;
    664  1.52        ad 	l = ci->ci_onproc;
    665  1.63        ad 
    666  1.63        ad 	/*
    667  1.63        ad 	 * Arrange for mi_switch() to be called.  If called from interrupt
    668  1.63        ad 	 * mode, we don't know if curlwp is executing in kernel or user, so
    669  1.63        ad 	 * post an AST and have it take a trip through userret().  If not in
    670  1.63        ad 	 * interrupt mode, curlwp is running in kernel and will notice the
    671  1.63        ad 	 * resched soon enough; avoid the AST.
    672  1.63        ad 	 */
    673   1.5        ad 	if (l == ci->ci_data.cpu_idlelwp) {
    674  1.54        ad 		atomic_or_uint(&ci->ci_want_resched,
    675  1.54        ad 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    676   1.5        ad 	} else {
    677  1.63        ad 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
    678  1.63        ad 		if (cpu_intr_p()) {
    679  1.63        ad 			cpu_signotify(l);
    680  1.63        ad 		}
    681   1.5        ad 	}
    682   1.5        ad }
    683   1.5        ad 
    684   1.5        ad /*
    685   1.5        ad  * softint_thread:
    686   1.5        ad  *
    687   1.5        ad  *	Slow path: MI software interrupt dispatch.
    688   1.5        ad  */
    689   1.5        ad void
    690   1.5        ad softint_thread(void *cookie)
    691   1.5        ad {
    692   1.5        ad 	softint_t *si;
    693   1.5        ad 	lwp_t *l;
    694   1.5        ad 	int s;
    695   1.5        ad 
    696   1.5        ad 	l = curlwp;
    697   1.5        ad 	si = l->l_private;
    698   1.5        ad 
    699   1.5        ad 	for (;;) {
    700  1.64        ad 		/* Clear pending status and run it. */
    701   1.5        ad 		s = splhigh();
    702   1.5        ad 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    703  1.66        ad 		softint_execute(l, s);
    704   1.5        ad 		splx(s);
    705   1.5        ad 
    706  1.64        ad 		/* Interrupts allowed to run again before switching. */
    707   1.5        ad 		lwp_lock(l);
    708   1.5        ad 		l->l_stat = LSIDL;
    709  1.55        ad 		spc_lock(l->l_cpu);
    710   1.5        ad 		mi_switch(l);
    711   1.5        ad 	}
    712   1.2        ad }
    713   1.4        ad 
    714   1.4        ad /*
    715   1.4        ad  * softint_picklwp:
    716   1.4        ad  *
    717   1.4        ad  *	Slow path: called from mi_switch() to pick the highest priority
    718   1.4        ad  *	soft interrupt LWP that needs to run.
    719   1.4        ad  */
    720   1.4        ad lwp_t *
    721   1.4        ad softint_picklwp(void)
    722   1.4        ad {
    723   1.5        ad 	struct cpu_info *ci;
    724   1.5        ad 	u_int mask;
    725   1.5        ad 	softint_t *si;
    726   1.5        ad 	lwp_t *l;
    727   1.5        ad 
    728   1.5        ad 	ci = curcpu();
    729   1.5        ad 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    730   1.5        ad 	mask = ci->ci_data.cpu_softints;
    731   1.5        ad 
    732   1.5        ad 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    733   1.5        ad 		l = si[SOFTINT_SERIAL].si_lwp;
    734   1.5        ad 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    735   1.5        ad 		l = si[SOFTINT_NET].si_lwp;
    736   1.5        ad 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    737   1.5        ad 		l = si[SOFTINT_BIO].si_lwp;
    738   1.5        ad 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    739   1.5        ad 		l = si[SOFTINT_CLOCK].si_lwp;
    740   1.5        ad 	} else {
    741   1.5        ad 		panic("softint_picklwp");
    742   1.5        ad 	}
    743   1.4        ad 
    744   1.5        ad 	return l;
    745   1.4        ad }
    746   1.4        ad 
    747   1.5        ad #else	/*  !__HAVE_FAST_SOFTINTS */
    748   1.5        ad 
    749   1.5        ad /*
    750   1.5        ad  * softint_thread:
    751   1.5        ad  *
    752   1.5        ad  *	Fast path: the LWP is switched to without restoring any state,
    753   1.5        ad  *	so we should not arrive here - there is a direct handoff between
    754   1.5        ad  *	the interrupt stub and softint_dispatch().
    755   1.5        ad  */
    756   1.5        ad void
    757   1.5        ad softint_thread(void *cookie)
    758   1.5        ad {
    759   1.5        ad 
    760   1.5        ad 	panic("softint_thread");
    761   1.5        ad }
    762   1.5        ad 
    763   1.5        ad /*
    764   1.5        ad  * softint_dispatch:
    765   1.5        ad  *
    766   1.5        ad  *	Fast path: entry point from machine-dependent code.
    767   1.5        ad  */
    768   1.5        ad void
    769   1.5        ad softint_dispatch(lwp_t *pinned, int s)
    770   1.5        ad {
    771   1.9      yamt 	struct bintime now;
    772   1.5        ad 	u_int timing;
    773   1.5        ad 	lwp_t *l;
    774   1.5        ad 
    775  1.59        ad #ifdef DIAGNOSTIC
    776  1.60        ad 	if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
    777  1.59        ad 		struct lwp *onproc = curcpu()->ci_onproc;
    778  1.59        ad 		int s2 = splhigh();
    779  1.59        ad 		printf("curcpu=%d, spl=%d curspl=%d\n"
    780  1.59        ad 			"onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    781  1.59        ad 			"curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    782  1.59        ad 			"pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
    783  1.59        ad 			cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
    784  1.59        ad 			onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
    785  1.59        ad 			curlwp->l_stat, curlwp->l_flag,
    786  1.59        ad 			cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
    787  1.59        ad 			pinned->l_flag, cpu_index(pinned->l_cpu));
    788  1.59        ad 		splx(s2);
    789  1.59        ad 		panic("softint screwup");
    790  1.59        ad 	}
    791  1.59        ad #endif
    792  1.59        ad 
    793   1.5        ad 	/*
    794   1.5        ad 	 * Note the interrupted LWP, and mark the current LWP as running
    795   1.5        ad 	 * before proceeding.  Although this must as a rule be done with
    796   1.5        ad 	 * the LWP locked, at this point no external agents will want to
    797   1.5        ad 	 * modify the interrupt LWP's state.
    798   1.5        ad 	 */
    799  1.57        ad 	timing = softint_timing;
    800  1.66        ad 	l = curlwp;
    801   1.5        ad 	l->l_switchto = pinned;
    802   1.5        ad 	l->l_stat = LSONPROC;
    803   1.5        ad 
    804   1.5        ad 	/*
    805   1.5        ad 	 * Dispatch the interrupt.  If softints are being timed, charge
    806   1.5        ad 	 * for it.
    807   1.5        ad 	 */
    808  1.49        ad 	if (timing) {
    809  1.11      yamt 		binuptime(&l->l_stime);
    810  1.49        ad 		membar_producer();	/* for calcru */
    811  1.57        ad 		l->l_pflag |= LP_TIMEINTR;
    812  1.49        ad 	}
    813  1.60        ad 	l->l_pflag |= LP_RUNNING;
    814  1.66        ad 	softint_execute(l, s);
    815   1.5        ad 	if (timing) {
    816  1.11      yamt 		binuptime(&now);
    817   1.5        ad 		updatertime(l, &now);
    818  1.22        ad 		l->l_pflag &= ~LP_TIMEINTR;
    819   1.5        ad 	}
    820   1.5        ad 
    821   1.5        ad 	/*
    822   1.5        ad 	 * If we blocked while handling the interrupt, the pinned LWP is
    823  1.66        ad 	 * gone and we are now running as a kthread, so find another LWP to
    824  1.66        ad 	 * run.  softint_dispatch() won't be reentered until the priority is
    825  1.66        ad 	 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
    826   1.5        ad 	 */
    827   1.5        ad 	l->l_stat = LSIDL;
    828   1.5        ad 	if (l->l_switchto == NULL) {
    829  1.57        ad 		lwp_lock(l);
    830  1.57        ad 		spc_lock(l->l_cpu);
    831  1.57        ad 		mi_switch(l);
    832   1.5        ad 		/* NOTREACHED */
    833   1.5        ad 	}
    834   1.5        ad 	l->l_switchto = NULL;
    835  1.60        ad 	l->l_pflag &= ~LP_RUNNING;
    836   1.5        ad }
    837   1.5        ad 
    838   1.5        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    839