kern_softint.c revision 1.71 1 1.71 thorpej /* $NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.58 ad * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.5 ad * Generic software interrupt framework.
34 1.5 ad *
35 1.5 ad * Overview
36 1.5 ad *
37 1.5 ad * The soft interrupt framework provides a mechanism to schedule a
38 1.5 ad * low priority callback that runs with thread context. It allows
39 1.5 ad * for dynamic registration of software interrupts, and for fair
40 1.5 ad * queueing and prioritization of those interrupts. The callbacks
41 1.5 ad * can be scheduled to run from nearly any point in the kernel: by
42 1.5 ad * code running with thread context, by code running from a
43 1.5 ad * hardware interrupt handler, and at any interrupt priority
44 1.5 ad * level.
45 1.5 ad *
46 1.5 ad * Priority levels
47 1.5 ad *
48 1.5 ad * Since soft interrupt dispatch can be tied to the underlying
49 1.5 ad * architecture's interrupt dispatch code, it can be limited
50 1.5 ad * both by the capabilities of the hardware and the capabilities
51 1.5 ad * of the interrupt dispatch code itself. The number of priority
52 1.5 ad * levels is restricted to four. In order of priority (lowest to
53 1.5 ad * highest) the levels are: clock, bio, net, serial.
54 1.5 ad *
55 1.5 ad * The names are symbolic and in isolation do not have any direct
56 1.5 ad * connection with a particular kind of device activity: they are
57 1.5 ad * only meant as a guide.
58 1.5 ad *
59 1.5 ad * The four priority levels map directly to scheduler priority
60 1.5 ad * levels, and where the architecture implements 'fast' software
61 1.5 ad * interrupts, they also map onto interrupt priorities. The
62 1.5 ad * interrupt priorities are intended to be hidden from machine
63 1.5 ad * independent code, which should use thread-safe mechanisms to
64 1.5 ad * synchronize with software interrupts (for example: mutexes).
65 1.5 ad *
66 1.5 ad * Capabilities
67 1.5 ad *
68 1.5 ad * Software interrupts run with limited machine context. In
69 1.5 ad * particular, they do not posess any address space context. They
70 1.5 ad * should not try to operate on user space addresses, or to use
71 1.5 ad * virtual memory facilities other than those noted as interrupt
72 1.5 ad * safe.
73 1.5 ad *
74 1.5 ad * Unlike hardware interrupts, software interrupts do have thread
75 1.5 ad * context. They may block on synchronization objects, sleep, and
76 1.5 ad * resume execution at a later time.
77 1.5 ad *
78 1.5 ad * Since software interrupts are a limited resource and run with
79 1.5 ad * higher priority than most other LWPs in the system, all
80 1.5 ad * block-and-resume activity by a software interrupt must be kept
81 1.67 msaitoh * short to allow further processing at that level to continue. By
82 1.5 ad * extension, code running with process context must take care to
83 1.5 ad * ensure that any lock that may be taken from a software interrupt
84 1.5 ad * can not be held for more than a short period of time.
85 1.5 ad *
86 1.5 ad * The kernel does not allow software interrupts to use facilities
87 1.5 ad * or perform actions that may block for a significant amount of
88 1.5 ad * time. This means that it's not valid for a software interrupt
89 1.10 ad * to sleep on condition variables or wait for resources to become
90 1.10 ad * available (for example, memory).
91 1.5 ad *
92 1.5 ad * Per-CPU operation
93 1.5 ad *
94 1.5 ad * If a soft interrupt is triggered on a CPU, it can only be
95 1.5 ad * dispatched on the same CPU. Each LWP dedicated to handling a
96 1.5 ad * soft interrupt is bound to its home CPU, so if the LWP blocks
97 1.5 ad * and needs to run again, it can only run there. Nearly all data
98 1.5 ad * structures used to manage software interrupts are per-CPU.
99 1.5 ad *
100 1.5 ad * The per-CPU requirement is intended to reduce "ping-pong" of
101 1.5 ad * cache lines between CPUs: lines occupied by data structures
102 1.5 ad * used to manage the soft interrupts, and lines occupied by data
103 1.5 ad * items being passed down to the soft interrupt. As a positive
104 1.5 ad * side effect, this also means that the soft interrupt dispatch
105 1.5 ad * code does not need to to use spinlocks to synchronize.
106 1.5 ad *
107 1.5 ad * Generic implementation
108 1.5 ad *
109 1.5 ad * A generic, low performance implementation is provided that
110 1.5 ad * works across all architectures, with no machine-dependent
111 1.5 ad * modifications needed. This implementation uses the scheduler,
112 1.5 ad * and so has a number of restrictions:
113 1.5 ad *
114 1.5 ad * 1) The software interrupts are not currently preemptive, so
115 1.65 skrll * must wait for the currently executing LWP to yield the CPU.
116 1.5 ad * This can introduce latency.
117 1.5 ad *
118 1.5 ad * 2) An expensive context switch is required for a software
119 1.5 ad * interrupt to be handled.
120 1.5 ad *
121 1.5 ad * 'Fast' software interrupts
122 1.5 ad *
123 1.5 ad * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 1.5 ad * the fast mechanism. Threads running either in the kernel or in
125 1.5 ad * userspace will be interrupted, but will not be preempted. When
126 1.5 ad * the soft interrupt completes execution, the interrupted LWP
127 1.5 ad * is resumed. Interrupt dispatch code must provide the minimum
128 1.5 ad * level of context necessary for the soft interrupt to block and
129 1.5 ad * be resumed at a later time. The machine-dependent dispatch
130 1.5 ad * path looks something like the following:
131 1.5 ad *
132 1.5 ad * softintr()
133 1.5 ad * {
134 1.5 ad * go to IPL_HIGH if necessary for switch;
135 1.5 ad * save any necessary registers in a format that can be
136 1.5 ad * restored by cpu_switchto if the softint blocks;
137 1.5 ad * arrange for cpu_switchto() to restore into the
138 1.5 ad * trampoline function;
139 1.5 ad * identify LWP to handle this interrupt;
140 1.5 ad * switch to the LWP's stack;
141 1.5 ad * switch register stacks, if necessary;
142 1.5 ad * assign new value of curlwp;
143 1.5 ad * call MI softint_dispatch, passing old curlwp and IPL
144 1.5 ad * to execute interrupt at;
145 1.5 ad * switch back to old stack;
146 1.5 ad * switch back to old register stack, if necessary;
147 1.5 ad * restore curlwp;
148 1.5 ad * return to interrupted LWP;
149 1.5 ad * }
150 1.5 ad *
151 1.5 ad * If the soft interrupt blocks, a trampoline function is returned
152 1.5 ad * to in the context of the interrupted LWP, as arranged for by
153 1.5 ad * softint():
154 1.5 ad *
155 1.5 ad * softint_ret()
156 1.5 ad * {
157 1.5 ad * unlock soft interrupt LWP;
158 1.5 ad * resume interrupt processing, likely returning to
159 1.5 ad * interrupted LWP or dispatching another, different
160 1.5 ad * interrupt;
161 1.5 ad * }
162 1.5 ad *
163 1.5 ad * Once the soft interrupt has fired (and even if it has blocked),
164 1.5 ad * no further soft interrupts at that level will be triggered by
165 1.65 skrll * MI code until the soft interrupt handler has ceased execution.
166 1.5 ad * If a soft interrupt handler blocks and is resumed, it resumes
167 1.5 ad * execution as a normal LWP (kthread) and gains VM context. Only
168 1.5 ad * when it has completed and is ready to fire again will it
169 1.5 ad * interrupt other threads.
170 1.2 ad */
171 1.2 ad
172 1.2 ad #include <sys/cdefs.h>
173 1.71 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $");
174 1.2 ad
175 1.2 ad #include <sys/param.h>
176 1.5 ad #include <sys/proc.h>
177 1.2 ad #include <sys/intr.h>
178 1.41 rmind #include <sys/ipi.h>
179 1.61 ad #include <sys/lock.h>
180 1.5 ad #include <sys/mutex.h>
181 1.45 msaitoh #include <sys/kernel.h>
182 1.5 ad #include <sys/kthread.h>
183 1.5 ad #include <sys/evcnt.h>
184 1.5 ad #include <sys/cpu.h>
185 1.24 ad #include <sys/xcall.h>
186 1.71 thorpej #include <sys/psref.h>
187 1.5 ad
188 1.5 ad #include <uvm/uvm_extern.h>
189 1.5 ad
190 1.5 ad /* This could overlap with signal info in struct lwp. */
191 1.5 ad typedef struct softint {
192 1.5 ad SIMPLEQ_HEAD(, softhand) si_q;
193 1.5 ad struct lwp *si_lwp;
194 1.5 ad struct cpu_info *si_cpu;
195 1.5 ad uintptr_t si_machdep;
196 1.5 ad struct evcnt si_evcnt;
197 1.5 ad struct evcnt si_evcnt_block;
198 1.63 ad volatile int si_active;
199 1.66 ad int si_ipl;
200 1.5 ad char si_name[8];
201 1.5 ad char si_name_block[8+6];
202 1.5 ad } softint_t;
203 1.5 ad
204 1.5 ad typedef struct softhand {
205 1.5 ad SIMPLEQ_ENTRY(softhand) sh_q;
206 1.5 ad void (*sh_func)(void *);
207 1.5 ad void *sh_arg;
208 1.5 ad softint_t *sh_isr;
209 1.28 bouyer u_int sh_flags;
210 1.41 rmind u_int sh_ipi_id;
211 1.5 ad } softhand_t;
212 1.5 ad
213 1.5 ad typedef struct softcpu {
214 1.5 ad struct cpu_info *sc_cpu;
215 1.5 ad softint_t sc_int[SOFTINT_COUNT];
216 1.5 ad softhand_t sc_hand[1];
217 1.5 ad } softcpu_t;
218 1.5 ad
219 1.5 ad static void softint_thread(void *);
220 1.5 ad
221 1.44 msaitoh u_int softint_bytes = 32768;
222 1.5 ad u_int softint_timing;
223 1.5 ad static u_int softint_max;
224 1.5 ad static kmutex_t softint_lock;
225 1.2 ad
226 1.5 ad /*
227 1.5 ad * softint_init_isr:
228 1.5 ad *
229 1.5 ad * Initialize a single interrupt level for a single CPU.
230 1.5 ad */
231 1.5 ad static void
232 1.66 ad softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
233 1.66 ad int ipl)
234 1.5 ad {
235 1.5 ad struct cpu_info *ci;
236 1.5 ad softint_t *si;
237 1.5 ad int error;
238 1.5 ad
239 1.5 ad si = &sc->sc_int[level];
240 1.5 ad ci = sc->sc_cpu;
241 1.5 ad si->si_cpu = ci;
242 1.5 ad
243 1.5 ad SIMPLEQ_INIT(&si->si_q);
244 1.5 ad
245 1.5 ad error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
246 1.5 ad KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
247 1.12 martin "soft%s/%u", desc, ci->ci_index);
248 1.5 ad if (error != 0)
249 1.5 ad panic("softint_init_isr: error %d", error);
250 1.5 ad
251 1.12 martin snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
252 1.12 martin ci->ci_index);
253 1.20 ad evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
254 1.5 ad "softint", si->si_name);
255 1.12 martin snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
256 1.12 martin desc, ci->ci_index);
257 1.20 ad evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
258 1.5 ad "softint", si->si_name_block);
259 1.3 ad
260 1.66 ad si->si_ipl = ipl;
261 1.5 ad si->si_lwp->l_private = si;
262 1.5 ad softint_init_md(si->si_lwp, level, &si->si_machdep);
263 1.5 ad }
264 1.37 uebayasi
265 1.2 ad /*
266 1.2 ad * softint_init:
267 1.2 ad *
268 1.2 ad * Initialize per-CPU data structures. Called from mi_cpu_attach().
269 1.2 ad */
270 1.2 ad void
271 1.2 ad softint_init(struct cpu_info *ci)
272 1.2 ad {
273 1.5 ad static struct cpu_info *first;
274 1.5 ad softcpu_t *sc, *scfirst;
275 1.5 ad softhand_t *sh, *shmax;
276 1.5 ad
277 1.5 ad if (first == NULL) {
278 1.5 ad /* Boot CPU. */
279 1.5 ad first = ci;
280 1.5 ad mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
281 1.5 ad softint_bytes = round_page(softint_bytes);
282 1.5 ad softint_max = (softint_bytes - sizeof(softcpu_t)) /
283 1.5 ad sizeof(softhand_t);
284 1.5 ad }
285 1.2 ad
286 1.37 uebayasi /* Use uvm_km(9) for persistent, page-aligned allocation. */
287 1.37 uebayasi sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
288 1.37 uebayasi UVM_KMF_WIRED | UVM_KMF_ZERO);
289 1.5 ad if (sc == NULL)
290 1.5 ad panic("softint_init_cpu: cannot allocate memory");
291 1.5 ad
292 1.5 ad ci->ci_data.cpu_softcpu = sc;
293 1.5 ad ci->ci_data.cpu_softints = 0;
294 1.5 ad sc->sc_cpu = ci;
295 1.5 ad
296 1.66 ad softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
297 1.66 ad IPL_SOFTNET);
298 1.66 ad softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
299 1.66 ad IPL_SOFTBIO);
300 1.66 ad softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
301 1.66 ad IPL_SOFTCLOCK);
302 1.66 ad softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
303 1.66 ad IPL_SOFTSERIAL);
304 1.5 ad
305 1.5 ad if (first != ci) {
306 1.5 ad mutex_enter(&softint_lock);
307 1.5 ad scfirst = first->ci_data.cpu_softcpu;
308 1.5 ad sh = sc->sc_hand;
309 1.5 ad memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
310 1.5 ad /* Update pointers for this CPU. */
311 1.5 ad for (shmax = sh + softint_max; sh < shmax; sh++) {
312 1.5 ad if (sh->sh_func == NULL)
313 1.5 ad continue;
314 1.5 ad sh->sh_isr =
315 1.5 ad &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
316 1.5 ad }
317 1.5 ad mutex_exit(&softint_lock);
318 1.5 ad }
319 1.2 ad }
320 1.2 ad
321 1.2 ad /*
322 1.2 ad * softint_establish:
323 1.2 ad *
324 1.2 ad * Register a software interrupt handler.
325 1.2 ad */
326 1.2 ad void *
327 1.2 ad softint_establish(u_int flags, void (*func)(void *), void *arg)
328 1.2 ad {
329 1.5 ad CPU_INFO_ITERATOR cii;
330 1.5 ad struct cpu_info *ci;
331 1.5 ad softcpu_t *sc;
332 1.5 ad softhand_t *sh;
333 1.5 ad u_int level, index;
334 1.41 rmind u_int ipi_id = 0;
335 1.41 rmind void *sih;
336 1.2 ad
337 1.2 ad level = (flags & SOFTINT_LVLMASK);
338 1.2 ad KASSERT(level < SOFTINT_COUNT);
339 1.24 ad KASSERT((flags & SOFTINT_IMPMASK) == 0);
340 1.2 ad
341 1.5 ad mutex_enter(&softint_lock);
342 1.5 ad
343 1.5 ad /* Find a free slot. */
344 1.5 ad sc = curcpu()->ci_data.cpu_softcpu;
345 1.32 matt for (index = 1; index < softint_max; index++) {
346 1.5 ad if (sc->sc_hand[index].sh_func == NULL)
347 1.5 ad break;
348 1.32 matt }
349 1.5 ad if (index == softint_max) {
350 1.5 ad mutex_exit(&softint_lock);
351 1.5 ad printf("WARNING: softint_establish: table full, "
352 1.5 ad "increase softint_bytes\n");
353 1.5 ad return NULL;
354 1.5 ad }
355 1.41 rmind sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
356 1.41 rmind
357 1.41 rmind if (flags & SOFTINT_RCPU) {
358 1.41 rmind if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
359 1.41 rmind mutex_exit(&softint_lock);
360 1.41 rmind return NULL;
361 1.41 rmind }
362 1.41 rmind }
363 1.5 ad
364 1.5 ad /* Set up the handler on each CPU. */
365 1.8 ad if (ncpu < 2) {
366 1.7 ad /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
367 1.7 ad sc = curcpu()->ci_data.cpu_softcpu;
368 1.7 ad sh = &sc->sc_hand[index];
369 1.7 ad sh->sh_isr = &sc->sc_int[level];
370 1.7 ad sh->sh_func = func;
371 1.7 ad sh->sh_arg = arg;
372 1.7 ad sh->sh_flags = flags;
373 1.41 rmind sh->sh_ipi_id = ipi_id;
374 1.7 ad } else for (CPU_INFO_FOREACH(cii, ci)) {
375 1.5 ad sc = ci->ci_data.cpu_softcpu;
376 1.5 ad sh = &sc->sc_hand[index];
377 1.5 ad sh->sh_isr = &sc->sc_int[level];
378 1.5 ad sh->sh_func = func;
379 1.5 ad sh->sh_arg = arg;
380 1.5 ad sh->sh_flags = flags;
381 1.41 rmind sh->sh_ipi_id = ipi_id;
382 1.2 ad }
383 1.5 ad mutex_exit(&softint_lock);
384 1.5 ad
385 1.41 rmind return sih;
386 1.2 ad }
387 1.2 ad
388 1.2 ad /*
389 1.2 ad * softint_disestablish:
390 1.2 ad *
391 1.24 ad * Unregister a software interrupt handler. The soft interrupt could
392 1.24 ad * still be active at this point, but the caller commits not to try
393 1.24 ad * and trigger it again once this call is made. The caller must not
394 1.24 ad * hold any locks that could be taken from soft interrupt context,
395 1.24 ad * because we will wait for the softint to complete if it's still
396 1.24 ad * running.
397 1.2 ad */
398 1.2 ad void
399 1.2 ad softint_disestablish(void *arg)
400 1.2 ad {
401 1.5 ad CPU_INFO_ITERATOR cii;
402 1.5 ad struct cpu_info *ci;
403 1.5 ad softcpu_t *sc;
404 1.5 ad softhand_t *sh;
405 1.5 ad uintptr_t offset;
406 1.5 ad
407 1.5 ad offset = (uintptr_t)arg;
408 1.40 matt KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
409 1.40 matt offset, softint_bytes);
410 1.5 ad
411 1.24 ad /*
412 1.66 ad * Unregister IPI handler if there is any. Note: there is no need
413 1.66 ad * to disable preemption here - ID is stable.
414 1.41 rmind */
415 1.41 rmind sc = curcpu()->ci_data.cpu_softcpu;
416 1.41 rmind sh = (softhand_t *)((uint8_t *)sc + offset);
417 1.41 rmind if (sh->sh_ipi_id) {
418 1.41 rmind ipi_unregister(sh->sh_ipi_id);
419 1.41 rmind }
420 1.41 rmind
421 1.41 rmind /*
422 1.66 ad * Run a dummy softint at the same level on all CPUs and wait for
423 1.66 ad * completion, to make sure this softint is no longer running
424 1.66 ad * anywhere.
425 1.24 ad */
426 1.66 ad xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
427 1.5 ad
428 1.5 ad /* Clear the handler on each CPU. */
429 1.24 ad mutex_enter(&softint_lock);
430 1.5 ad for (CPU_INFO_FOREACH(cii, ci)) {
431 1.5 ad sc = ci->ci_data.cpu_softcpu;
432 1.5 ad sh = (softhand_t *)((uint8_t *)sc + offset);
433 1.5 ad KASSERT(sh->sh_func != NULL);
434 1.5 ad sh->sh_func = NULL;
435 1.5 ad }
436 1.5 ad mutex_exit(&softint_lock);
437 1.2 ad }
438 1.2 ad
439 1.2 ad /*
440 1.2 ad * softint_schedule:
441 1.2 ad *
442 1.2 ad * Trigger a software interrupt. Must be called from a hardware
443 1.2 ad * interrupt handler, or with preemption disabled (since we are
444 1.2 ad * using the value of curcpu()).
445 1.2 ad */
446 1.2 ad void
447 1.2 ad softint_schedule(void *arg)
448 1.2 ad {
449 1.5 ad softhand_t *sh;
450 1.5 ad softint_t *si;
451 1.5 ad uintptr_t offset;
452 1.5 ad int s;
453 1.5 ad
454 1.64 ad /*
455 1.64 ad * If this assert fires, rather than disabling preemption explicitly
456 1.64 ad * to make it stop, consider that you are probably using a softint
457 1.64 ad * when you don't need to.
458 1.65 skrll */
459 1.17 ad KASSERT(kpreempt_disabled());
460 1.17 ad
461 1.5 ad /* Find the handler record for this CPU. */
462 1.5 ad offset = (uintptr_t)arg;
463 1.40 matt KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
464 1.40 matt offset, softint_bytes);
465 1.5 ad sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
466 1.5 ad
467 1.5 ad /* If it's already pending there's nothing to do. */
468 1.32 matt if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
469 1.5 ad return;
470 1.32 matt }
471 1.5 ad
472 1.5 ad /*
473 1.5 ad * Enqueue the handler into the LWP's pending list.
474 1.5 ad * If the LWP is completely idle, then make it run.
475 1.5 ad */
476 1.5 ad s = splhigh();
477 1.24 ad if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
478 1.5 ad si = sh->sh_isr;
479 1.24 ad sh->sh_flags |= SOFTINT_PENDING;
480 1.5 ad SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
481 1.5 ad if (si->si_active == 0) {
482 1.5 ad si->si_active = 1;
483 1.5 ad softint_trigger(si->si_machdep);
484 1.5 ad }
485 1.5 ad }
486 1.5 ad splx(s);
487 1.5 ad }
488 1.5 ad
489 1.5 ad /*
490 1.41 rmind * softint_schedule_cpu:
491 1.41 rmind *
492 1.41 rmind * Trigger a software interrupt on a target CPU. This invokes
493 1.41 rmind * softint_schedule() for the local CPU or send an IPI to invoke
494 1.41 rmind * this routine on the remote CPU. Preemption must be disabled.
495 1.41 rmind */
496 1.41 rmind void
497 1.41 rmind softint_schedule_cpu(void *arg, struct cpu_info *ci)
498 1.41 rmind {
499 1.41 rmind KASSERT(kpreempt_disabled());
500 1.41 rmind
501 1.41 rmind if (curcpu() != ci) {
502 1.41 rmind const softcpu_t *sc = ci->ci_data.cpu_softcpu;
503 1.41 rmind const uintptr_t offset = (uintptr_t)arg;
504 1.41 rmind const softhand_t *sh;
505 1.41 rmind
506 1.41 rmind sh = (const softhand_t *)((const uint8_t *)sc + offset);
507 1.41 rmind KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
508 1.41 rmind ipi_trigger(sh->sh_ipi_id, ci);
509 1.41 rmind return;
510 1.41 rmind }
511 1.41 rmind
512 1.41 rmind /* Just a local CPU. */
513 1.41 rmind softint_schedule(arg);
514 1.41 rmind }
515 1.41 rmind
516 1.41 rmind /*
517 1.5 ad * softint_execute:
518 1.5 ad *
519 1.5 ad * Invoke handlers for the specified soft interrupt.
520 1.5 ad * Must be entered at splhigh. Will drop the priority
521 1.5 ad * to the level specified, but returns back at splhigh.
522 1.5 ad */
523 1.5 ad static inline void
524 1.66 ad softint_execute(lwp_t *l, int s)
525 1.5 ad {
526 1.66 ad softint_t *si = l->l_private;
527 1.5 ad softhand_t *sh;
528 1.5 ad
529 1.5 ad KASSERT(si->si_lwp == curlwp);
530 1.5 ad KASSERT(si->si_cpu == curcpu());
531 1.5 ad KASSERT(si->si_lwp->l_wchan == NULL);
532 1.5 ad KASSERT(si->si_active);
533 1.5 ad
534 1.5 ad /*
535 1.5 ad * Note: due to priority inheritance we may have interrupted a
536 1.5 ad * higher priority LWP. Since the soft interrupt must be quick
537 1.5 ad * and is non-preemptable, we don't bother yielding.
538 1.5 ad */
539 1.5 ad
540 1.5 ad while (!SIMPLEQ_EMPTY(&si->si_q)) {
541 1.5 ad /*
542 1.5 ad * Pick the longest waiting handler to run. We block
543 1.5 ad * interrupts but do not lock in order to do this, as
544 1.5 ad * we are protecting against the local CPU only.
545 1.5 ad */
546 1.5 ad sh = SIMPLEQ_FIRST(&si->si_q);
547 1.5 ad SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
548 1.24 ad KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
549 1.66 ad sh->sh_flags ^= SOFTINT_PENDING;
550 1.5 ad splx(s);
551 1.5 ad
552 1.5 ad /* Run the handler. */
553 1.58 ad if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
554 1.58 ad (*sh->sh_func)(sh->sh_arg);
555 1.58 ad } else {
556 1.5 ad KERNEL_LOCK(1, l);
557 1.58 ad (*sh->sh_func)(sh->sh_arg);
558 1.58 ad KERNEL_UNLOCK_ONE(l);
559 1.5 ad }
560 1.65 skrll
561 1.34 rmind /* Diagnostic: check that spin-locks have not leaked. */
562 1.34 rmind KASSERTMSG(curcpu()->ci_mtx_count == 0,
563 1.38 jym "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
564 1.38 jym __func__, curcpu()->ci_mtx_count, sh->sh_func);
565 1.46 ozaki /* Diagnostic: check that psrefs have not leaked. */
566 1.46 ozaki KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
567 1.46 ozaki __func__, l->l_psrefs, sh->sh_func);
568 1.70 riastrad /* Diagnostic: check that biglocks have not leaked. */
569 1.70 riastrad KASSERTMSG(l->l_blcnt == 0,
570 1.70 riastrad "%s: sh_func=%p leaked %d biglocks",
571 1.70 riastrad __func__, sh->sh_func, curlwp->l_blcnt);
572 1.41 rmind
573 1.5 ad (void)splhigh();
574 1.5 ad }
575 1.2 ad
576 1.47 ozaki PSREF_DEBUG_BARRIER();
577 1.47 ozaki
578 1.56 ad CPU_COUNT(CPU_COUNT_NSOFT, 1);
579 1.5 ad
580 1.13 ad KASSERT(si->si_cpu == curcpu());
581 1.13 ad KASSERT(si->si_lwp->l_wchan == NULL);
582 1.13 ad KASSERT(si->si_active);
583 1.5 ad si->si_evcnt.ev_count++;
584 1.5 ad si->si_active = 0;
585 1.2 ad }
586 1.2 ad
587 1.2 ad /*
588 1.2 ad * softint_block:
589 1.2 ad *
590 1.2 ad * Update statistics when the soft interrupt blocks.
591 1.2 ad */
592 1.2 ad void
593 1.2 ad softint_block(lwp_t *l)
594 1.2 ad {
595 1.5 ad softint_t *si = l->l_private;
596 1.5 ad
597 1.5 ad KASSERT((l->l_pflag & LP_INTR) != 0);
598 1.5 ad si->si_evcnt_block.ev_count++;
599 1.5 ad }
600 1.5 ad
601 1.5 ad #ifndef __HAVE_FAST_SOFTINTS
602 1.5 ad
603 1.19 ad #ifdef __HAVE_PREEMPTION
604 1.19 ad #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
605 1.17 ad #endif
606 1.17 ad
607 1.5 ad /*
608 1.5 ad * softint_init_md:
609 1.5 ad *
610 1.5 ad * Slow path: perform machine-dependent initialization.
611 1.5 ad */
612 1.5 ad void
613 1.5 ad softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
614 1.5 ad {
615 1.50 ad struct proc *p;
616 1.5 ad softint_t *si;
617 1.5 ad
618 1.5 ad *machdep = (1 << level);
619 1.5 ad si = l->l_private;
620 1.50 ad p = l->l_proc;
621 1.5 ad
622 1.50 ad mutex_enter(p->p_lock);
623 1.5 ad lwp_lock(l);
624 1.5 ad /* Cheat and make the KASSERT in softint_thread() happy. */
625 1.5 ad si->si_active = 1;
626 1.50 ad setrunnable(l);
627 1.50 ad /* LWP now unlocked */
628 1.50 ad mutex_exit(p->p_lock);
629 1.5 ad }
630 1.5 ad
631 1.5 ad /*
632 1.5 ad * softint_trigger:
633 1.5 ad *
634 1.5 ad * Slow path: cause a soft interrupt handler to begin executing.
635 1.5 ad * Called at IPL_HIGH.
636 1.5 ad */
637 1.5 ad void
638 1.5 ad softint_trigger(uintptr_t machdep)
639 1.5 ad {
640 1.5 ad struct cpu_info *ci;
641 1.5 ad lwp_t *l;
642 1.2 ad
643 1.51 ad ci = curcpu();
644 1.5 ad ci->ci_data.cpu_softints |= machdep;
645 1.52 ad l = ci->ci_onproc;
646 1.63 ad
647 1.63 ad /*
648 1.63 ad * Arrange for mi_switch() to be called. If called from interrupt
649 1.63 ad * mode, we don't know if curlwp is executing in kernel or user, so
650 1.63 ad * post an AST and have it take a trip through userret(). If not in
651 1.63 ad * interrupt mode, curlwp is running in kernel and will notice the
652 1.63 ad * resched soon enough; avoid the AST.
653 1.63 ad */
654 1.5 ad if (l == ci->ci_data.cpu_idlelwp) {
655 1.54 ad atomic_or_uint(&ci->ci_want_resched,
656 1.54 ad RESCHED_IDLE | RESCHED_UPREEMPT);
657 1.5 ad } else {
658 1.63 ad atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
659 1.63 ad if (cpu_intr_p()) {
660 1.63 ad cpu_signotify(l);
661 1.63 ad }
662 1.5 ad }
663 1.5 ad }
664 1.5 ad
665 1.5 ad /*
666 1.5 ad * softint_thread:
667 1.5 ad *
668 1.5 ad * Slow path: MI software interrupt dispatch.
669 1.5 ad */
670 1.5 ad void
671 1.5 ad softint_thread(void *cookie)
672 1.5 ad {
673 1.5 ad softint_t *si;
674 1.5 ad lwp_t *l;
675 1.5 ad int s;
676 1.5 ad
677 1.5 ad l = curlwp;
678 1.5 ad si = l->l_private;
679 1.5 ad
680 1.5 ad for (;;) {
681 1.64 ad /* Clear pending status and run it. */
682 1.5 ad s = splhigh();
683 1.5 ad l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
684 1.66 ad softint_execute(l, s);
685 1.5 ad splx(s);
686 1.5 ad
687 1.64 ad /* Interrupts allowed to run again before switching. */
688 1.5 ad lwp_lock(l);
689 1.5 ad l->l_stat = LSIDL;
690 1.55 ad spc_lock(l->l_cpu);
691 1.5 ad mi_switch(l);
692 1.5 ad }
693 1.2 ad }
694 1.4 ad
695 1.4 ad /*
696 1.4 ad * softint_picklwp:
697 1.4 ad *
698 1.4 ad * Slow path: called from mi_switch() to pick the highest priority
699 1.4 ad * soft interrupt LWP that needs to run.
700 1.4 ad */
701 1.4 ad lwp_t *
702 1.4 ad softint_picklwp(void)
703 1.4 ad {
704 1.5 ad struct cpu_info *ci;
705 1.5 ad u_int mask;
706 1.5 ad softint_t *si;
707 1.5 ad lwp_t *l;
708 1.5 ad
709 1.5 ad ci = curcpu();
710 1.5 ad si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
711 1.5 ad mask = ci->ci_data.cpu_softints;
712 1.5 ad
713 1.5 ad if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
714 1.5 ad l = si[SOFTINT_SERIAL].si_lwp;
715 1.5 ad } else if ((mask & (1 << SOFTINT_NET)) != 0) {
716 1.5 ad l = si[SOFTINT_NET].si_lwp;
717 1.5 ad } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
718 1.5 ad l = si[SOFTINT_BIO].si_lwp;
719 1.5 ad } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
720 1.5 ad l = si[SOFTINT_CLOCK].si_lwp;
721 1.5 ad } else {
722 1.5 ad panic("softint_picklwp");
723 1.5 ad }
724 1.4 ad
725 1.5 ad return l;
726 1.4 ad }
727 1.4 ad
728 1.5 ad #else /* !__HAVE_FAST_SOFTINTS */
729 1.5 ad
730 1.5 ad /*
731 1.5 ad * softint_thread:
732 1.5 ad *
733 1.5 ad * Fast path: the LWP is switched to without restoring any state,
734 1.5 ad * so we should not arrive here - there is a direct handoff between
735 1.5 ad * the interrupt stub and softint_dispatch().
736 1.5 ad */
737 1.5 ad void
738 1.5 ad softint_thread(void *cookie)
739 1.5 ad {
740 1.5 ad
741 1.5 ad panic("softint_thread");
742 1.5 ad }
743 1.5 ad
744 1.5 ad /*
745 1.5 ad * softint_dispatch:
746 1.5 ad *
747 1.5 ad * Fast path: entry point from machine-dependent code.
748 1.5 ad */
749 1.5 ad void
750 1.5 ad softint_dispatch(lwp_t *pinned, int s)
751 1.5 ad {
752 1.9 yamt struct bintime now;
753 1.5 ad u_int timing;
754 1.5 ad lwp_t *l;
755 1.5 ad
756 1.59 ad #ifdef DIAGNOSTIC
757 1.60 ad if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
758 1.59 ad struct lwp *onproc = curcpu()->ci_onproc;
759 1.59 ad int s2 = splhigh();
760 1.59 ad printf("curcpu=%d, spl=%d curspl=%d\n"
761 1.59 ad "onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
762 1.59 ad "curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
763 1.59 ad "pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
764 1.59 ad cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
765 1.59 ad onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
766 1.59 ad curlwp->l_stat, curlwp->l_flag,
767 1.59 ad cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
768 1.59 ad pinned->l_flag, cpu_index(pinned->l_cpu));
769 1.59 ad splx(s2);
770 1.59 ad panic("softint screwup");
771 1.59 ad }
772 1.59 ad #endif
773 1.59 ad
774 1.5 ad /*
775 1.5 ad * Note the interrupted LWP, and mark the current LWP as running
776 1.5 ad * before proceeding. Although this must as a rule be done with
777 1.5 ad * the LWP locked, at this point no external agents will want to
778 1.5 ad * modify the interrupt LWP's state.
779 1.5 ad */
780 1.57 ad timing = softint_timing;
781 1.66 ad l = curlwp;
782 1.5 ad l->l_switchto = pinned;
783 1.5 ad l->l_stat = LSONPROC;
784 1.5 ad
785 1.5 ad /*
786 1.5 ad * Dispatch the interrupt. If softints are being timed, charge
787 1.5 ad * for it.
788 1.5 ad */
789 1.49 ad if (timing) {
790 1.11 yamt binuptime(&l->l_stime);
791 1.49 ad membar_producer(); /* for calcru */
792 1.57 ad l->l_pflag |= LP_TIMEINTR;
793 1.49 ad }
794 1.60 ad l->l_pflag |= LP_RUNNING;
795 1.66 ad softint_execute(l, s);
796 1.5 ad if (timing) {
797 1.11 yamt binuptime(&now);
798 1.5 ad updatertime(l, &now);
799 1.22 ad l->l_pflag &= ~LP_TIMEINTR;
800 1.5 ad }
801 1.5 ad
802 1.5 ad /*
803 1.5 ad * If we blocked while handling the interrupt, the pinned LWP is
804 1.66 ad * gone and we are now running as a kthread, so find another LWP to
805 1.66 ad * run. softint_dispatch() won't be reentered until the priority is
806 1.66 ad * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
807 1.5 ad */
808 1.5 ad l->l_stat = LSIDL;
809 1.5 ad if (l->l_switchto == NULL) {
810 1.57 ad lwp_lock(l);
811 1.57 ad spc_lock(l->l_cpu);
812 1.57 ad mi_switch(l);
813 1.5 ad /* NOTREACHED */
814 1.5 ad }
815 1.5 ad l->l_switchto = NULL;
816 1.60 ad l->l_pflag &= ~LP_RUNNING;
817 1.5 ad }
818 1.5 ad
819 1.5 ad #endif /* !__HAVE_FAST_SOFTINTS */
820