kern_softint.c revision 1.1.2.15 1 /* $NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Generic software interrupt framework.
41 *
42 * Overview
43 *
44 * The soft interrupt framework provides a mechanism to schedule a
45 * low priority callback that runs with thread context. It allows
46 * for dynamic registration of software interrupts, and for fair
47 * queueing and prioritization of those interrupts. The callbacks
48 * can be scheduled to run from nearly any point in the kernel: by
49 * code running with thread context, by code running from a
50 * hardware interrupt handler, and at any interrupt priority
51 * level.
52 *
53 * Priority levels
54 *
55 * Since soft interrupt dispatch can be tied to the underlying
56 * architecture's interrupt dispatch code, it can be limited
57 * both by the capabilities of the hardware and the capabilities
58 * of the interrupt dispatch code itself. The number of priority
59 * levels is restricted to four. In order of priority (lowest to
60 * highest) the levels are: clock, bio, net, serial.
61 *
62 * The names are symbolic and in isolation do not have any direct
63 * connection with a particular kind of device activity: they are
64 * only meant as a guide.
65 *
66 * The four priority levels map directly to scheduler priority
67 * levels, and where the architecture implements 'fast' software
68 * interrupts, they also map onto interrupt priorities. The
69 * interrupt priorities are intended to be hidden from machine
70 * independent code, which should use thread-safe mechanisms to
71 * synchronize with software interrupts (for example: mutexes).
72 *
73 * Capabilities
74 *
75 * Software interrupts run with limited machine context. In
76 * particular, they do not posess any address space context. They
77 * should not try to operate on user space addresses, or to use
78 * virtual memory facilities other than those noted as interrupt
79 * safe.
80 *
81 * Unlike hardware interrupts, software interrupts do have thread
82 * context. They may block on synchronization objects, sleep, and
83 * resume execution at a later time.
84 *
85 * Since software interrupts are a limited resource and run with
86 * higher priority than most other LWPs in the system, all
87 * block-and-resume activity by a software interrupt must be kept
88 * short to allow futher processing at that level to continue. By
89 * extension, code running with process context must take care to
90 * ensure that any lock that may be taken from a software interrupt
91 * can not be held for more than a short period of time.
92 *
93 * The kernel does not allow software interrupts to use facilities
94 * or perform actions that may block for a significant amount of
95 * time. This means that it's not valid for a software interrupt
96 * to: sleep on condition variables, use the lockmgr() facility,
97 * or wait for resources to become available (for example,
98 * memory).
99 *
100 * Per-CPU operation
101 *
102 * If a soft interrupt is triggered on a CPU, it can only be
103 * dispatched on the same CPU. Each LWP dedicated to handling a
104 * soft interrupt is bound to its home CPU, so if the LWP blocks
105 * and needs to run again, it can only run there. Nearly all data
106 * structures used to manage software interrupts are per-CPU.
107 *
108 * The per-CPU requirement is intended to reduce "ping-pong" of
109 * cache lines between CPUs: lines occupied by data structures
110 * used to manage the soft interrupts, and lines occupied by data
111 * items being passed down to the soft interrupt. As a positive
112 * side effect, this also means that the soft interrupt dispatch
113 * code does not need to to use spinlocks to synchronize.
114 *
115 * Generic implementation
116 *
117 * A generic, low performance implementation is provided that
118 * works across all architectures, with no machine-dependent
119 * modifications needed. This implementation uses the scheduler,
120 * and so has a number of restrictions:
121 *
122 * 1) Since software interrupts can be triggered from any priority
123 * level, on architectures where the generic implementation is
124 * used IPL_SCHED must be equal to IPL_HIGH (it must block all
125 * interrupts).
126 *
127 * 2) The software interrupts are not currently preemptive, so
128 * must wait for the currently executing LWP to yield the CPU.
129 * This can introduce latency.
130 *
131 * 3) A context switch is required for each soft interrupt to be
132 * handled, which can be quite expensive.
133 *
134 * 'Fast' software interrupts
135 *
136 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
137 * the fast mechanism. Threads running either in the kernel or in
138 * userspace will be interrupted, but will not be preempted. When
139 * the soft interrupt completes execution, the interrupted LWP
140 * is resumed. Interrupt dispatch code must provide the minimum
141 * level of context necessary for the soft interrupt to block and
142 * be resumed at a later time. The machine-dependent dispatch
143 * path looks something like the following:
144 *
145 * softintr()
146 * {
147 * go to IPL_HIGH if necessary for switch;
148 * save any necessary registers in a format that can be
149 * restored by cpu_switchto if the softint blocks;
150 * arrange for cpu_switchto() to restore into the
151 * trampoline function;
152 * identify LWP to handle this interrupt;
153 * switch to the LWP's stack;
154 * switch register stacks, if necessary;
155 * assign new value of curlwp;
156 * call MI softint_dispatch, passing old curlwp and IPL
157 * to execute interrupt at;
158 * switch back to old stack;
159 * switch back to old register stack, if necessary;
160 * restore curlwp;
161 * return to interrupted LWP;
162 * }
163 *
164 * If the soft interrupt blocks, a trampoline function is returned
165 * to in the context of the interrupted LWP, as arranged for by
166 * softint():
167 *
168 * softint_ret()
169 * {
170 * unlock soft interrupt LWP;
171 * resume interrupt processing, likely returning to
172 * interrupted LWP or dispatching another, different
173 * interrupt;
174 * }
175 *
176 * Once the soft interrupt has fired (and even if it has blocked),
177 * no further soft interrupts at that level will be triggered by
178 * MI code until the soft interrupt handler has ceased execution.
179 * If a soft interrupt handler blocks and is resumed, it resumes
180 * execution as a normal LWP (kthread) and gains VM context. Only
181 * when it has completed and is ready to fire again will it
182 * interrupt other threads.
183 */
184
185 #include <sys/cdefs.h>
186 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.15 2007/09/24 13:05:19 ad Exp $");
187
188 #include <sys/param.h>
189 #include <sys/malloc.h>
190 #include <sys/proc.h>
191 #include <sys/intr.h>
192 #include <sys/mutex.h>
193 #include <sys/kthread.h>
194 #include <sys/evcnt.h>
195 #include <sys/cpu.h>
196
197 #include <net/netisr.h>
198
199 #include <uvm/uvm_extern.h>
200
201 #define PRI_SOFTSERIAL (PRI_COUNT - 1)
202 #define PRI_SOFTNET (PRI_SOFTSERIAL - schedppq * 1)
203 #define PRI_SOFTBIO (PRI_SOFTSERIAL - schedppq * 2)
204 #define PRI_SOFTCLOCK (PRI_SOFTSERIAL - schedppq * 3)
205
206 /* This could overlap with signal info in struct lwp. */
207 typedef struct softint {
208 SIMPLEQ_HEAD(, softhand) si_q;
209 struct lwp *si_lwp;
210 struct cpu_info *si_cpu;
211 uintptr_t si_machdep;
212 struct evcnt si_evcnt;
213 struct evcnt si_evcnt_block;
214 int si_active;
215 char si_name[8];
216 char si_name_block[8+6];
217 } softint_t;
218
219 typedef struct softhand {
220 SIMPLEQ_ENTRY(softhand) sh_q;
221 void (*sh_func)(void *);
222 void *sh_arg;
223 softint_t *sh_isr;
224 u_int sh_pending;
225 u_int sh_flags;
226 } softhand_t;
227
228 typedef struct softcpu {
229 struct cpu_info *sc_cpu;
230 softint_t sc_int[SOFTINT_COUNT];
231 softhand_t sc_hand[1];
232 } softcpu_t;
233
234 static void softint_thread(void *);
235 static void softint_netisr(void *);
236
237 u_int softint_bytes = 8192;
238 u_int softint_timing;
239 static u_int softint_max;
240 static kmutex_t softint_lock;
241 static void *softint_netisr_sih;
242
243 /*
244 * softint_init_isr:
245 *
246 * Initialize a single interrupt level for a single CPU.
247 */
248 static void
249 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
250 {
251 struct cpu_info *ci;
252 softint_t *si;
253 int error;
254
255 si = &sc->sc_int[level];
256 ci = sc->sc_cpu;
257 si->si_cpu = ci;
258
259 SIMPLEQ_INIT(&si->si_q);
260
261 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
262 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
263 "soft%s/%d", desc, (int)ci->ci_cpuid);
264 if (error != 0)
265 panic("softint_init_isr: error %d", error);
266
267 snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
268 (int)ci->ci_cpuid);
269 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
270 "softint", si->si_name);
271 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
272 desc, (int)ci->ci_cpuid);
273 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
274 "softint", si->si_name_block);
275
276 si->si_lwp->l_private = si;
277 softint_init_md(si->si_lwp, level, &si->si_machdep);
278 #ifdef __HAVE_FAST_SOFTINTS
279 si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
280 #endif
281 }
282 /*
283 * softint_init:
284 *
285 * Initialize per-CPU data structures. Called from mi_cpu_attach().
286 */
287 void
288 softint_init(struct cpu_info *ci)
289 {
290 static struct cpu_info *first;
291 softcpu_t *sc, *scfirst;
292 softhand_t *sh, *shmax;
293
294 if (first == NULL) {
295 /* Boot CPU. */
296 first = ci;
297 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
298 softint_bytes = round_page(softint_bytes);
299 softint_max = (softint_bytes - sizeof(softcpu_t)) /
300 sizeof(softhand_t);
301 }
302
303 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
304 UVM_KMF_WIRED | UVM_KMF_ZERO);
305 if (sc == NULL)
306 panic("softint_init_cpu: cannot allocate memory");
307
308 ci->ci_data.cpu_softcpu = sc;
309 sc->sc_cpu = ci;
310
311 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
312 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
313 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
314 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
315
316 if (first != ci) {
317 /* Don't lock -- autoconfiguration will prevent reentry. */
318 scfirst = first->ci_data.cpu_softcpu;
319 sh = sc->sc_hand;
320 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
321
322 /* Update pointers for this CPU. */
323 for (shmax = sh + softint_max; sh < shmax; sh++) {
324 if (sh->sh_func == NULL)
325 continue;
326 sh->sh_isr =
327 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
328 }
329 } else {
330 /* Establish a handler for legacy net interrupts. */
331 softint_netisr_sih = softint_establish(SOFTINT_NET,
332 softint_netisr, NULL);
333 KASSERT(softint_netisr_sih != NULL);
334 }
335 }
336
337 /*
338 * softint_establish:
339 *
340 * Register a software interrupt handler.
341 */
342 void *
343 softint_establish(u_int flags, void (*func)(void *), void *arg)
344 {
345 CPU_INFO_ITERATOR cii;
346 struct cpu_info *ci;
347 softcpu_t *sc;
348 softhand_t *sh;
349 u_int level, index;
350
351 level = (flags & SOFTINT_LVLMASK);
352 KASSERT(level < SOFTINT_COUNT);
353
354 mutex_enter(&softint_lock);
355
356 /* Find a free slot. */
357 sc = curcpu()->ci_data.cpu_softcpu;
358 for (index = 1; index < softint_max; index++)
359 if (sc->sc_hand[index].sh_func == NULL)
360 break;
361 if (index == softint_max) {
362 mutex_exit(&softint_lock);
363 printf("WARNING: softint_establish: table full, "
364 "increase softint_bytes\n");
365 return NULL;
366 }
367
368 /* Set up the handler on each CPU. */
369 for (CPU_INFO_FOREACH(cii, ci)) {
370 sc = ci->ci_data.cpu_softcpu;
371 sh = &sc->sc_hand[index];
372
373 sh->sh_isr = &sc->sc_int[level];
374 sh->sh_func = func;
375 sh->sh_arg = arg;
376 sh->sh_flags = flags;
377 sh->sh_pending = 0;
378 }
379
380 mutex_exit(&softint_lock);
381
382 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
383 }
384
385 /*
386 * softint_disestablish:
387 *
388 * Unregister a software interrupt handler.
389 */
390 void
391 softint_disestablish(void *arg)
392 {
393 CPU_INFO_ITERATOR cii;
394 struct cpu_info *ci;
395 softcpu_t *sc;
396 softhand_t *sh;
397 uintptr_t offset;
398
399 offset = (uintptr_t)arg;
400 KASSERT(offset != 0 && offset < softint_bytes);
401
402 mutex_enter(&softint_lock);
403
404 /* Set up the handler on each CPU. */
405 for (CPU_INFO_FOREACH(cii, ci)) {
406 sc = ci->ci_data.cpu_softcpu;
407 sh = (softhand_t *)((uint8_t *)sc + offset);
408 KASSERT(sh->sh_func != NULL);
409 KASSERT(sh->sh_pending == 0);
410 sh->sh_func = NULL;
411 }
412
413 mutex_exit(&softint_lock);
414 }
415
416 /*
417 * softint_schedule:
418 *
419 * Trigger a software interrupt. Must be called from a hardware
420 * interrupt handler, or with preemption disabled (since we are
421 * using the value of curcpu()).
422 */
423 void
424 softint_schedule(void *arg)
425 {
426 softhand_t *sh;
427 softint_t *si;
428 uintptr_t offset;
429 int s;
430
431 /* Find the handler record for this CPU. */
432 offset = (uintptr_t)arg;
433 KASSERT(offset != 0 && offset < softint_bytes);
434 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
435
436 /* If it's already pending there's nothing to do. */
437 if (sh->sh_pending)
438 return;
439
440 /*
441 * Enqueue the handler into the LWP's pending list.
442 * If the LWP is completely idle, then make it run.
443 */
444 s = splhigh();
445 if (!sh->sh_pending) {
446 si = sh->sh_isr;
447 sh->sh_pending = 1;
448 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
449 if (si->si_active == 0) {
450 si->si_active = 1;
451 softint_trigger(si->si_machdep);
452 }
453 }
454 splx(s);
455 }
456
457 /*
458 * softint_execute:
459 *
460 * Invoke handlers for the specified soft interrupt.
461 * Must be entered at splhigh. Will drop the priority
462 * to the level specified, but returns back at splhigh.
463 */
464 static inline void
465 softint_execute(softint_t *si, lwp_t *l, int s)
466 {
467 softhand_t *sh;
468 bool havelock;
469
470 KASSERT(si->si_lwp == curlwp);
471 KASSERT(si->si_cpu == curcpu());
472 KASSERT(si->si_lwp->l_wchan == NULL);
473 KASSERT(si->si_active);
474
475 havelock = false;
476
477 /*
478 * Note: due to priority inheritance we may have interrupted a
479 * higher priority LWP. Since the soft interrupt must be quick
480 * and is non-preemptable, we don't bother yielding.
481 */
482
483 while (!SIMPLEQ_EMPTY(&si->si_q)) {
484 /*
485 * Pick the longest waiting handler to run. We block
486 * interrupts but do not lock in order to do this, as
487 * we are protecting against the local CPU only.
488 */
489 sh = SIMPLEQ_FIRST(&si->si_q);
490 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
491 sh->sh_pending = 0;
492 splx(s);
493
494 /* Run the handler. */
495 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
496 KERNEL_LOCK(1, l);
497 havelock = true;
498 }
499 (*sh->sh_func)(sh->sh_arg);
500
501 (void)splhigh();
502 }
503
504 if (havelock) {
505 KERNEL_UNLOCK_ONE(l);
506 }
507
508 /*
509 * Unlocked, but only for statistics.
510 * Should be per-CPU to prevent cache ping-pong.
511 */
512 uvmexp.softs++;
513
514 si->si_evcnt.ev_count++;
515 si->si_active = 0;
516 }
517
518 /*
519 * schednetisr:
520 *
521 * Trigger a legacy network interrupt. XXX Needs to go away.
522 */
523 void
524 schednetisr(int isr)
525 {
526 int s;
527
528 s = splhigh();
529 curcpu()->ci_data.cpu_netisrs |= (1 << isr);
530 softint_schedule(softint_netisr_sih);
531 splx(s);
532 }
533
534 /*
535 * softintr_netisr:
536 *
537 * Dispatch legacy network interrupts. XXX Needs to go away.
538 */
539 static void
540 softint_netisr(void *cookie)
541 {
542 struct cpu_info *ci;
543 int s, bits;
544
545 ci = curcpu();
546
547 s = splhigh();
548 bits = ci->ci_data.cpu_netisrs;
549 ci->ci_data.cpu_netisrs = 0;
550 splx(s);
551
552 #define DONETISR(which, func) \
553 do { \
554 void func(void); \
555 if ((bits & (1 << which)) != 0) \
556 func(); \
557 } while(0);
558 #include <net/netisr_dispatch.h>
559 #undef DONETISR
560 }
561
562 #ifndef __HAVE_FAST_SOFTINTS
563
564 /*
565 * softint_init_md:
566 *
567 * Perform machine-dependent initialization.
568 */
569 void
570 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
571 {
572 softint_t *si;
573
574 *machdep = (uintptr_t)l;
575 si = l->l_private;
576
577 lwp_lock(l);
578 /* Cheat and make the KASSERT in softint_thread() happy. */
579 si->si_active = 1;
580 l->l_stat = LSRUN;
581 sched_enqueue(l, false);
582 lwp_unlock(l);
583 }
584
585 /*
586 * softint_trigger:
587 *
588 * Cause a soft interrupt handler to begin executing.
589 */
590 void
591 softint_trigger(uintptr_t machdep)
592 {
593 struct cpu_info *ci;
594 lwp_t *l;
595
596 l = (lwp_t *)machdep;
597 ci = l->l_cpu;
598
599 spc_lock(ci);
600 l->l_mutex = ci->ci_schedstate.spc_mutex;
601 l->l_stat = LSRUN;
602 sched_enqueue(l, false);
603 cpu_need_resched(ci, RESCHED_IMMED);
604 spc_unlock(ci);
605 }
606
607 /*
608 * softint_thread:
609 *
610 * Slow path MI software interrupt dispatch.
611 */
612 void
613 softint_thread(void *cookie)
614 {
615 softint_t *si;
616 lwp_t *l;
617 int s;
618
619 l = curlwp;
620 si = l->l_private;
621 s = splhigh();
622
623 for (;;) {
624 softint_execute(si, l, s);
625
626 lwp_lock(l);
627 l->l_stat = LSIDL;
628 mi_switch(l);
629 }
630 }
631
632 #else /* !__HAVE_FAST_SOFTINTS */
633
634 /*
635 * softint_thread:
636 *
637 * In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
638 * restoring any state, so we should not arrive here - there is a
639 * direct handoff between the interrupt stub and softint_dispatch().
640 */
641 void
642 softint_thread(void *cookie)
643 {
644
645 panic("softint_thread");
646 }
647
648 /*
649 * softint_dispatch:
650 *
651 * Entry point from machine-dependent code.
652 */
653 void
654 softint_dispatch(lwp_t *pinned, int s)
655 {
656 struct timeval now;
657 softint_t *si;
658 u_int timing;
659 lwp_t *l;
660
661 l = curlwp;
662 si = l->l_private;
663
664 /*
665 * Note the interrupted LWP, and mark the current LWP as running
666 * before proceeding. Although this must as a rule be done with
667 * the LWP locked, at this point no external agents will want to
668 * modify the interrupt LWP's state.
669 */
670 timing = (softint_timing ? LW_TIMEINTR : 0);
671 l->l_switchto = pinned;
672 l->l_stat = LSONPROC;
673 l->l_flag |= (LW_RUNNING | timing);
674
675 /*
676 * Dispatch the interrupt. If softints are being timed, charge
677 * for it.
678 */
679 if (timing)
680 microtime(&l->l_stime);
681 softint_execute(si, l, s);
682 if (timing) {
683 microtime(&now);
684 updatertime(l, &now);
685 l->l_flag &= ~LW_TIMEINTR;
686 }
687
688 /*
689 * If we blocked while handling the interrupt, the pinned LWP is
690 * gone so switch to the idle LWP. It will select a new LWP to
691 * run.
692 *
693 * We must drop the priority level as switching at IPL_HIGH could
694 * deadlock the system. We have already set si->si_active = 0,
695 * which means another interrupt at this level can be triggered.
696 * That's not be a problem: we are lowering to level 's' which will
697 * prevent softint_dispatch() from being reentered at level 's',
698 * until the priority is finally dropped to IPL_NONE on entry to
699 * the idle loop.
700 */
701 l->l_stat = LSIDL;
702 if (l->l_switchto == NULL) {
703 splx(s);
704 pmap_deactivate(l);
705 lwp_exit_switchaway(l);
706 /* NOTREACHED */
707 }
708 l->l_switchto = NULL;
709 l->l_flag &= ~LW_RUNNING;
710 }
711
712 #endif /* !__HAVE_FAST_SOFTINTS */
713
714 /*
715 * softint_block:
716 *
717 * Update statistics when the soft interrupt blocks.
718 */
719 void
720 softint_block(lwp_t *l)
721 {
722 softint_t *si = l->l_private;
723
724 KASSERT((l->l_flag & LW_INTR) != 0);
725 si->si_evcnt_block.ev_count++;
726 }
727