kern_softint.c revision 1.1.2.16 1 /* $NetBSD: kern_softint.c,v 1.1.2.16 2007/10/09 13:44:28 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Stub for code to be merged from the vmlocking CVS branch.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.16 2007/10/09 13:44:28 ad Exp $");
45
46 #include <sys/param.h>
47 #include <sys/intr.h>
48
49 u_int softint_timing;
50
51 /*
52 * softint_init:
53 *
54 * Initialize per-CPU data structures. Called from mi_cpu_attach().
55 */
56 void
57 softint_init(struct cpu_info *ci)
58 {
59
60 /* nothing yet */
61 }
62
63 /*
64 * softint_establish:
65 *
66 * Register a software interrupt handler.
67 */
68 void *
69 softint_establish(u_int flags, void (*func)(void *), void *arg)
70 {
71 u_int level;
72
73 level = (flags & SOFTINT_LVLMASK);
74 KASSERT(level < SOFTINT_COUNT);
75
76 switch (level) {
77 case SOFTINT_CLOCK:
78 level = IPL_SOFTCLOCK;
79 break;
80 case SOFTINT_NET:
81 case SOFTINT_BIO:
82 level = IPL_SOFTNET;
83 break;
84 case SOFTINT_SERIAL:
85 #ifdef IPL_SOFTSERIAL
86 level = IPL_SOFTSERIAL;
87 #else
88 level = IPL_SOFTNET;
89 #endif
90 break;
91 default:
92 panic("softint_establish");
93 }
94
95 return softintr_establish(level, func, arg);
96 }
97
98 /*
99 * softint_disestablish:
100 *
101 * Unregister a software interrupt handler.
102 */
103 void
104 softint_disestablish(void *arg)
105 {
106
107 softintr_disestablish(arg);
108 }
109
110 /*
111 * softint_schedule:
112 *
113 * Trigger a software interrupt. Must be called from a hardware
114 * interrupt handler, or with preemption disabled (since we are
115 * using the value of curcpu()).
116 */
117 void
118 softint_schedule(void *arg)
119 {
120
121 softintr_schedule(arg);
122 }
123
124 /*
125 * softint_block:
126 *
127 * Update statistics when the soft interrupt blocks.
128 */
129 void
130 softint_block(lwp_t *l)
131 {
132
133 /* nothing yet */
134 }
135 /* $NetBSD: kern_softint.c,v 1.1.2.16 2007/10/09 13:44:28 ad Exp $ */
136
137 /*-
138 * Copyright (c) 2007 The NetBSD Foundation, Inc.
139 * All rights reserved.
140 *
141 * This code is derived from software contributed to The NetBSD Foundation
142 * by Andrew Doran.
143 *
144 * Redistribution and use in source and binary forms, with or without
145 * modification, are permitted provided that the following conditions
146 * are met:
147 * 1. Redistributions of source code must retain the above copyright
148 * notice, this list of conditions and the following disclaimer.
149 * 2. Redistributions in binary form must reproduce the above copyright
150 * notice, this list of conditions and the following disclaimer in the
151 * documentation and/or other materials provided with the distribution.
152 * 3. All advertising materials mentioning features or use of this software
153 * must display the following acknowledgement:
154 * This product includes software developed by the NetBSD
155 * Foundation, Inc. and its contributors.
156 * 4. Neither the name of The NetBSD Foundation nor the names of its
157 * contributors may be used to endorse or promote products derived
158 * from this software without specific prior written permission.
159 *
160 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
161 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
162 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
163 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
164 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
165 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
166 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
167 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
168 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
169 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
170 * POSSIBILITY OF SUCH DAMAGE.
171 */
172
173 /*
174 * Generic software interrupt framework.
175 *
176 * Overview
177 *
178 * The soft interrupt framework provides a mechanism to schedule a
179 * low priority callback that runs with thread context. It allows
180 * for dynamic registration of software interrupts, and for fair
181 * queueing and prioritization of those interrupts. The callbacks
182 * can be scheduled to run from nearly any point in the kernel: by
183 * code running with thread context, by code running from a
184 * hardware interrupt handler, and at any interrupt priority
185 * level.
186 *
187 * Priority levels
188 *
189 * Since soft interrupt dispatch can be tied to the underlying
190 * architecture's interrupt dispatch code, it can be limited
191 * both by the capabilities of the hardware and the capabilities
192 * of the interrupt dispatch code itself. The number of priority
193 * levels is restricted to four. In order of priority (lowest to
194 * highest) the levels are: clock, bio, net, serial.
195 *
196 * The names are symbolic and in isolation do not have any direct
197 * connection with a particular kind of device activity: they are
198 * only meant as a guide.
199 *
200 * The four priority levels map directly to scheduler priority
201 * levels, and where the architecture implements 'fast' software
202 * interrupts, they also map onto interrupt priorities. The
203 * interrupt priorities are intended to be hidden from machine
204 * independent code, which should use thread-safe mechanisms to
205 * synchronize with software interrupts (for example: mutexes).
206 *
207 * Capabilities
208 *
209 * Software interrupts run with limited machine context. In
210 * particular, they do not posess any address space context. They
211 * should not try to operate on user space addresses, or to use
212 * virtual memory facilities other than those noted as interrupt
213 * safe.
214 *
215 * Unlike hardware interrupts, software interrupts do have thread
216 * context. They may block on synchronization objects, sleep, and
217 * resume execution at a later time.
218 *
219 * Since software interrupts are a limited resource and run with
220 * higher priority than most other LWPs in the system, all
221 * block-and-resume activity by a software interrupt must be kept
222 * short to allow futher processing at that level to continue. By
223 * extension, code running with process context must take care to
224 * ensure that any lock that may be taken from a software interrupt
225 * can not be held for more than a short period of time.
226 *
227 * The kernel does not allow software interrupts to use facilities
228 * or perform actions that may block for a significant amount of
229 * time. This means that it's not valid for a software interrupt
230 * to: sleep on condition variables, use the lockmgr() facility,
231 * or wait for resources to become available (for example,
232 * memory).
233 *
234 * Per-CPU operation
235 *
236 * If a soft interrupt is triggered on a CPU, it can only be
237 * dispatched on the same CPU. Each LWP dedicated to handling a
238 * soft interrupt is bound to its home CPU, so if the LWP blocks
239 * and needs to run again, it can only run there. Nearly all data
240 * structures used to manage software interrupts are per-CPU.
241 *
242 * The per-CPU requirement is intended to reduce "ping-pong" of
243 * cache lines between CPUs: lines occupied by data structures
244 * used to manage the soft interrupts, and lines occupied by data
245 * items being passed down to the soft interrupt. As a positive
246 * side effect, this also means that the soft interrupt dispatch
247 * code does not need to to use spinlocks to synchronize.
248 *
249 * Generic implementation
250 *
251 * A generic, low performance implementation is provided that
252 * works across all architectures, with no machine-dependent
253 * modifications needed. This implementation uses the scheduler,
254 * and so has a number of restrictions:
255 *
256 * 1) Since software interrupts can be triggered from any priority
257 * level, on architectures where the generic implementation is
258 * used IPL_SCHED must be equal to IPL_HIGH (it must block all
259 * interrupts).
260 *
261 * 2) The software interrupts are not currently preemptive, so
262 * must wait for the currently executing LWP to yield the CPU.
263 * This can introduce latency.
264 *
265 * 3) A context switch is required for each soft interrupt to be
266 * handled, which can be quite expensive.
267 *
268 * 'Fast' software interrupts
269 *
270 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
271 * the fast mechanism. Threads running either in the kernel or in
272 * userspace will be interrupted, but will not be preempted. When
273 * the soft interrupt completes execution, the interrupted LWP
274 * is resumed. Interrupt dispatch code must provide the minimum
275 * level of context necessary for the soft interrupt to block and
276 * be resumed at a later time. The machine-dependent dispatch
277 * path looks something like the following:
278 *
279 * softintr()
280 * {
281 * go to IPL_HIGH if necessary for switch;
282 * save any necessary registers in a format that can be
283 * restored by cpu_switchto if the softint blocks;
284 * arrange for cpu_switchto() to restore into the
285 * trampoline function;
286 * identify LWP to handle this interrupt;
287 * switch to the LWP's stack;
288 * switch register stacks, if necessary;
289 * assign new value of curlwp;
290 * call MI softint_dispatch, passing old curlwp and IPL
291 * to execute interrupt at;
292 * switch back to old stack;
293 * switch back to old register stack, if necessary;
294 * restore curlwp;
295 * return to interrupted LWP;
296 * }
297 *
298 * If the soft interrupt blocks, a trampoline function is returned
299 * to in the context of the interrupted LWP, as arranged for by
300 * softint():
301 *
302 * softint_ret()
303 * {
304 * unlock soft interrupt LWP;
305 * resume interrupt processing, likely returning to
306 * interrupted LWP or dispatching another, different
307 * interrupt;
308 * }
309 *
310 * Once the soft interrupt has fired (and even if it has blocked),
311 * no further soft interrupts at that level will be triggered by
312 * MI code until the soft interrupt handler has ceased execution.
313 * If a soft interrupt handler blocks and is resumed, it resumes
314 * execution as a normal LWP (kthread) and gains VM context. Only
315 * when it has completed and is ready to fire again will it
316 * interrupt other threads.
317 */
318
319 #include <sys/cdefs.h>
320 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.16 2007/10/09 13:44:28 ad Exp $");
321
322 #include <sys/param.h>
323 #include <sys/malloc.h>
324 #include <sys/proc.h>
325 #include <sys/intr.h>
326 #include <sys/mutex.h>
327 #include <sys/kthread.h>
328 #include <sys/evcnt.h>
329 #include <sys/cpu.h>
330
331 #include <net/netisr.h>
332
333 #include <uvm/uvm_extern.h>
334
335 #define PRI_SOFTSERIAL (PRI_COUNT - 1)
336 #define PRI_SOFTNET (PRI_SOFTSERIAL - schedppq * 1)
337 #define PRI_SOFTBIO (PRI_SOFTSERIAL - schedppq * 2)
338 #define PRI_SOFTCLOCK (PRI_SOFTSERIAL - schedppq * 3)
339
340 /* This could overlap with signal info in struct lwp. */
341 typedef struct softint {
342 SIMPLEQ_HEAD(, softhand) si_q;
343 struct lwp *si_lwp;
344 struct cpu_info *si_cpu;
345 uintptr_t si_machdep;
346 struct evcnt si_evcnt;
347 struct evcnt si_evcnt_block;
348 int si_active;
349 char si_name[8];
350 char si_name_block[8+6];
351 } softint_t;
352
353 typedef struct softhand {
354 SIMPLEQ_ENTRY(softhand) sh_q;
355 void (*sh_func)(void *);
356 void *sh_arg;
357 softint_t *sh_isr;
358 u_int sh_pending;
359 u_int sh_flags;
360 } softhand_t;
361
362 typedef struct softcpu {
363 struct cpu_info *sc_cpu;
364 softint_t sc_int[SOFTINT_COUNT];
365 softhand_t sc_hand[1];
366 } softcpu_t;
367
368 static void softint_thread(void *);
369 static void softint_netisr(void *);
370
371 u_int softint_bytes = 8192;
372 u_int softint_timing;
373 static u_int softint_max;
374 static kmutex_t softint_lock;
375 static void *softint_netisr_sih;
376
377 /*
378 * softint_init_isr:
379 *
380 * Initialize a single interrupt level for a single CPU.
381 */
382 static void
383 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
384 {
385 struct cpu_info *ci;
386 softint_t *si;
387 int error;
388
389 si = &sc->sc_int[level];
390 ci = sc->sc_cpu;
391 si->si_cpu = ci;
392
393 SIMPLEQ_INIT(&si->si_q);
394
395 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
396 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
397 "soft%s/%d", desc, (int)ci->ci_cpuid);
398 if (error != 0)
399 panic("softint_init_isr: error %d", error);
400
401 snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
402 (int)ci->ci_cpuid);
403 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
404 "softint", si->si_name);
405 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
406 desc, (int)ci->ci_cpuid);
407 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
408 "softint", si->si_name_block);
409
410 si->si_lwp->l_private = si;
411 softint_init_md(si->si_lwp, level, &si->si_machdep);
412 #ifdef __HAVE_FAST_SOFTINTS
413 si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
414 #endif
415 }
416 /*
417 * softint_init:
418 *
419 * Initialize per-CPU data structures. Called from mi_cpu_attach().
420 */
421 void
422 softint_init(struct cpu_info *ci)
423 {
424 static struct cpu_info *first;
425 softcpu_t *sc, *scfirst;
426 softhand_t *sh, *shmax;
427
428 if (first == NULL) {
429 /* Boot CPU. */
430 first = ci;
431 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
432 softint_bytes = round_page(softint_bytes);
433 softint_max = (softint_bytes - sizeof(softcpu_t)) /
434 sizeof(softhand_t);
435 }
436
437 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
438 UVM_KMF_WIRED | UVM_KMF_ZERO);
439 if (sc == NULL)
440 panic("softint_init_cpu: cannot allocate memory");
441
442 ci->ci_data.cpu_softcpu = sc;
443 sc->sc_cpu = ci;
444
445 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
446 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
447 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
448 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
449
450 if (first != ci) {
451 /* Don't lock -- autoconfiguration will prevent reentry. */
452 scfirst = first->ci_data.cpu_softcpu;
453 sh = sc->sc_hand;
454 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
455
456 /* Update pointers for this CPU. */
457 for (shmax = sh + softint_max; sh < shmax; sh++) {
458 if (sh->sh_func == NULL)
459 continue;
460 sh->sh_isr =
461 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
462 }
463 } else {
464 /* Establish a handler for legacy net interrupts. */
465 softint_netisr_sih = softint_establish(SOFTINT_NET,
466 softint_netisr, NULL);
467 KASSERT(softint_netisr_sih != NULL);
468 }
469 }
470
471 /*
472 * softint_establish:
473 *
474 * Register a software interrupt handler.
475 */
476 void *
477 softint_establish(u_int flags, void (*func)(void *), void *arg)
478 {
479 CPU_INFO_ITERATOR cii;
480 struct cpu_info *ci;
481 softcpu_t *sc;
482 softhand_t *sh;
483 u_int level, index;
484
485 level = (flags & SOFTINT_LVLMASK);
486 KASSERT(level < SOFTINT_COUNT);
487
488 mutex_enter(&softint_lock);
489
490 /* Find a free slot. */
491 sc = curcpu()->ci_data.cpu_softcpu;
492 for (index = 1; index < softint_max; index++)
493 if (sc->sc_hand[index].sh_func == NULL)
494 break;
495 if (index == softint_max) {
496 mutex_exit(&softint_lock);
497 printf("WARNING: softint_establish: table full, "
498 "increase softint_bytes\n");
499 return NULL;
500 }
501
502 /* Set up the handler on each CPU. */
503 for (CPU_INFO_FOREACH(cii, ci)) {
504 sc = ci->ci_data.cpu_softcpu;
505 sh = &sc->sc_hand[index];
506
507 sh->sh_isr = &sc->sc_int[level];
508 sh->sh_func = func;
509 sh->sh_arg = arg;
510 sh->sh_flags = flags;
511 sh->sh_pending = 0;
512 }
513
514 mutex_exit(&softint_lock);
515
516 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
517 }
518
519 /*
520 * softint_disestablish:
521 *
522 * Unregister a software interrupt handler.
523 */
524 void
525 softint_disestablish(void *arg)
526 {
527 CPU_INFO_ITERATOR cii;
528 struct cpu_info *ci;
529 softcpu_t *sc;
530 softhand_t *sh;
531 uintptr_t offset;
532
533 offset = (uintptr_t)arg;
534 KASSERT(offset != 0 && offset < softint_bytes);
535
536 mutex_enter(&softint_lock);
537
538 /* Set up the handler on each CPU. */
539 for (CPU_INFO_FOREACH(cii, ci)) {
540 sc = ci->ci_data.cpu_softcpu;
541 sh = (softhand_t *)((uint8_t *)sc + offset);
542 KASSERT(sh->sh_func != NULL);
543 KASSERT(sh->sh_pending == 0);
544 sh->sh_func = NULL;
545 }
546
547 mutex_exit(&softint_lock);
548 }
549
550 /*
551 * softint_schedule:
552 *
553 * Trigger a software interrupt. Must be called from a hardware
554 * interrupt handler, or with preemption disabled (since we are
555 * using the value of curcpu()).
556 */
557 void
558 softint_schedule(void *arg)
559 {
560 softhand_t *sh;
561 softint_t *si;
562 uintptr_t offset;
563 int s;
564
565 /* Find the handler record for this CPU. */
566 offset = (uintptr_t)arg;
567 KASSERT(offset != 0 && offset < softint_bytes);
568 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
569
570 /* If it's already pending there's nothing to do. */
571 if (sh->sh_pending)
572 return;
573
574 /*
575 * Enqueue the handler into the LWP's pending list.
576 * If the LWP is completely idle, then make it run.
577 */
578 s = splhigh();
579 if (!sh->sh_pending) {
580 si = sh->sh_isr;
581 sh->sh_pending = 1;
582 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
583 if (si->si_active == 0) {
584 si->si_active = 1;
585 softint_trigger(si->si_machdep);
586 }
587 }
588 splx(s);
589 }
590
591 /*
592 * softint_execute:
593 *
594 * Invoke handlers for the specified soft interrupt.
595 * Must be entered at splhigh. Will drop the priority
596 * to the level specified, but returns back at splhigh.
597 */
598 static inline void
599 softint_execute(softint_t *si, lwp_t *l, int s)
600 {
601 softhand_t *sh;
602 bool havelock;
603
604 KASSERT(si->si_lwp == curlwp);
605 KASSERT(si->si_cpu == curcpu());
606 KASSERT(si->si_lwp->l_wchan == NULL);
607 KASSERT(si->si_active);
608
609 havelock = false;
610
611 /*
612 * Note: due to priority inheritance we may have interrupted a
613 * higher priority LWP. Since the soft interrupt must be quick
614 * and is non-preemptable, we don't bother yielding.
615 */
616
617 while (!SIMPLEQ_EMPTY(&si->si_q)) {
618 /*
619 * Pick the longest waiting handler to run. We block
620 * interrupts but do not lock in order to do this, as
621 * we are protecting against the local CPU only.
622 */
623 sh = SIMPLEQ_FIRST(&si->si_q);
624 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
625 sh->sh_pending = 0;
626 splx(s);
627
628 /* Run the handler. */
629 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
630 KERNEL_LOCK(1, l);
631 havelock = true;
632 }
633 (*sh->sh_func)(sh->sh_arg);
634
635 (void)splhigh();
636 }
637
638 if (havelock) {
639 KERNEL_UNLOCK_ONE(l);
640 }
641
642 /*
643 * Unlocked, but only for statistics.
644 * Should be per-CPU to prevent cache ping-pong.
645 */
646 uvmexp.softs++;
647
648 si->si_evcnt.ev_count++;
649 si->si_active = 0;
650 }
651
652 /*
653 * schednetisr:
654 *
655 * Trigger a legacy network interrupt. XXX Needs to go away.
656 */
657 void
658 schednetisr(int isr)
659 {
660 int s;
661
662 s = splhigh();
663 curcpu()->ci_data.cpu_netisrs |= (1 << isr);
664 softint_schedule(softint_netisr_sih);
665 splx(s);
666 }
667
668 /*
669 * softintr_netisr:
670 *
671 * Dispatch legacy network interrupts. XXX Needs to go away.
672 */
673 static void
674 softint_netisr(void *cookie)
675 {
676 struct cpu_info *ci;
677 int s, bits;
678
679 ci = curcpu();
680
681 s = splhigh();
682 bits = ci->ci_data.cpu_netisrs;
683 ci->ci_data.cpu_netisrs = 0;
684 splx(s);
685
686 #define DONETISR(which, func) \
687 do { \
688 void func(void); \
689 if ((bits & (1 << which)) != 0) \
690 func(); \
691 } while(0);
692 #include <net/netisr_dispatch.h>
693 #undef DONETISR
694 }
695
696 #ifndef __HAVE_FAST_SOFTINTS
697
698 /*
699 * softint_init_md:
700 *
701 * Perform machine-dependent initialization.
702 */
703 void
704 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
705 {
706 softint_t *si;
707
708 *machdep = (uintptr_t)l;
709 si = l->l_private;
710
711 lwp_lock(l);
712 /* Cheat and make the KASSERT in softint_thread() happy. */
713 si->si_active = 1;
714 l->l_stat = LSRUN;
715 sched_enqueue(l, false);
716 lwp_unlock(l);
717 }
718
719 /*
720 * softint_trigger:
721 *
722 * Cause a soft interrupt handler to begin executing.
723 */
724 void
725 softint_trigger(uintptr_t machdep)
726 {
727 struct cpu_info *ci;
728 lwp_t *l;
729
730 l = (lwp_t *)machdep;
731 ci = l->l_cpu;
732
733 spc_lock(ci);
734 l->l_mutex = ci->ci_schedstate.spc_mutex;
735 l->l_stat = LSRUN;
736 sched_enqueue(l, false);
737 cpu_need_resched(ci, RESCHED_IMMED);
738 spc_unlock(ci);
739 }
740
741 /*
742 * softint_thread:
743 *
744 * Slow path MI software interrupt dispatch.
745 */
746 void
747 softint_thread(void *cookie)
748 {
749 softint_t *si;
750 lwp_t *l;
751 int s;
752
753 l = curlwp;
754 si = l->l_private;
755 s = splhigh();
756
757 for (;;) {
758 softint_execute(si, l, s);
759
760 lwp_lock(l);
761 l->l_stat = LSIDL;
762 mi_switch(l);
763 }
764 }
765
766 #else /* !__HAVE_FAST_SOFTINTS */
767
768 /*
769 * softint_thread:
770 *
771 * In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
772 * restoring any state, so we should not arrive here - there is a
773 * direct handoff between the interrupt stub and softint_dispatch().
774 */
775 void
776 softint_thread(void *cookie)
777 {
778
779 panic("softint_thread");
780 }
781
782 /*
783 * softint_dispatch:
784 *
785 * Entry point from machine-dependent code.
786 */
787 void
788 softint_dispatch(lwp_t *pinned, int s)
789 {
790 struct timeval now;
791 softint_t *si;
792 u_int timing;
793 lwp_t *l;
794
795 l = curlwp;
796 si = l->l_private;
797
798 /*
799 * Note the interrupted LWP, and mark the current LWP as running
800 * before proceeding. Although this must as a rule be done with
801 * the LWP locked, at this point no external agents will want to
802 * modify the interrupt LWP's state.
803 */
804 timing = (softint_timing ? LW_TIMEINTR : 0);
805 l->l_switchto = pinned;
806 l->l_stat = LSONPROC;
807 l->l_flag |= (LW_RUNNING | timing);
808
809 /*
810 * Dispatch the interrupt. If softints are being timed, charge
811 * for it.
812 */
813 if (timing)
814 microtime(&l->l_stime);
815 softint_execute(si, l, s);
816 if (timing) {
817 microtime(&now);
818 updatertime(l, &now);
819 l->l_flag &= ~LW_TIMEINTR;
820 }
821
822 /*
823 * If we blocked while handling the interrupt, the pinned LWP is
824 * gone so switch to the idle LWP. It will select a new LWP to
825 * run.
826 *
827 * We must drop the priority level as switching at IPL_HIGH could
828 * deadlock the system. We have already set si->si_active = 0,
829 * which means another interrupt at this level can be triggered.
830 * That's not be a problem: we are lowering to level 's' which will
831 * prevent softint_dispatch() from being reentered at level 's',
832 * until the priority is finally dropped to IPL_NONE on entry to
833 * the idle loop.
834 */
835 l->l_stat = LSIDL;
836 if (l->l_switchto == NULL) {
837 splx(s);
838 pmap_deactivate(l);
839 lwp_exit_switchaway(l);
840 /* NOTREACHED */
841 }
842 l->l_switchto = NULL;
843 l->l_flag &= ~LW_RUNNING;
844 }
845
846 #endif /* !__HAVE_FAST_SOFTINTS */
847
848 /*
849 * softint_block:
850 *
851 * Update statistics when the soft interrupt blocks.
852 */
853 void
854 softint_block(lwp_t *l)
855 {
856 softint_t *si = l->l_private;
857
858 KASSERT((l->l_flag & LW_INTR) != 0);
859 si->si_evcnt_block.ev_count++;
860 }
861