kern_softint.c revision 1.1.2.18 1 /* $NetBSD: kern_softint.c,v 1.1.2.18 2007/10/18 15:47:00 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Generic software interrupt framework.
41 *
42 * Overview
43 *
44 * The soft interrupt framework provides a mechanism to schedule a
45 * low priority callback that runs with thread context. It allows
46 * for dynamic registration of software interrupts, and for fair
47 * queueing and prioritization of those interrupts. The callbacks
48 * can be scheduled to run from nearly any point in the kernel: by
49 * code running with thread context, by code running from a
50 * hardware interrupt handler, and at any interrupt priority
51 * level.
52 *
53 * Priority levels
54 *
55 * Since soft interrupt dispatch can be tied to the underlying
56 * architecture's interrupt dispatch code, it can be limited
57 * both by the capabilities of the hardware and the capabilities
58 * of the interrupt dispatch code itself. The number of priority
59 * levels is restricted to four. In order of priority (lowest to
60 * highest) the levels are: clock, bio, net, serial.
61 *
62 * The names are symbolic and in isolation do not have any direct
63 * connection with a particular kind of device activity: they are
64 * only meant as a guide.
65 *
66 * The four priority levels map directly to scheduler priority
67 * levels, and where the architecture implements 'fast' software
68 * interrupts, they also map onto interrupt priorities. The
69 * interrupt priorities are intended to be hidden from machine
70 * independent code, which should use thread-safe mechanisms to
71 * synchronize with software interrupts (for example: mutexes).
72 *
73 * Capabilities
74 *
75 * Software interrupts run with limited machine context. In
76 * particular, they do not posess any address space context. They
77 * should not try to operate on user space addresses, or to use
78 * virtual memory facilities other than those noted as interrupt
79 * safe.
80 *
81 * Unlike hardware interrupts, software interrupts do have thread
82 * context. They may block on synchronization objects, sleep, and
83 * resume execution at a later time.
84 *
85 * Since software interrupts are a limited resource and run with
86 * higher priority than most other LWPs in the system, all
87 * block-and-resume activity by a software interrupt must be kept
88 * short to allow futher processing at that level to continue. By
89 * extension, code running with process context must take care to
90 * ensure that any lock that may be taken from a software interrupt
91 * can not be held for more than a short period of time.
92 *
93 * The kernel does not allow software interrupts to use facilities
94 * or perform actions that may block for a significant amount of
95 * time. This means that it's not valid for a software interrupt
96 * to: sleep on condition variables, use the lockmgr() facility,
97 * or wait for resources to become available (for example,
98 * memory).
99 *
100 * Per-CPU operation
101 *
102 * If a soft interrupt is triggered on a CPU, it can only be
103 * dispatched on the same CPU. Each LWP dedicated to handling a
104 * soft interrupt is bound to its home CPU, so if the LWP blocks
105 * and needs to run again, it can only run there. Nearly all data
106 * structures used to manage software interrupts are per-CPU.
107 *
108 * The per-CPU requirement is intended to reduce "ping-pong" of
109 * cache lines between CPUs: lines occupied by data structures
110 * used to manage the soft interrupts, and lines occupied by data
111 * items being passed down to the soft interrupt. As a positive
112 * side effect, this also means that the soft interrupt dispatch
113 * code does not need to to use spinlocks to synchronize.
114 *
115 * Generic implementation
116 *
117 * A generic, low performance implementation is provided that
118 * works across all architectures, with no machine-dependent
119 * modifications needed. This implementation uses the scheduler,
120 * and so has a number of restrictions:
121 *
122 * 1) The software interrupts are not currently preemptive, so
123 * must wait for the currently executing LWP to yield the CPU.
124 * This can introduce latency.
125 *
126 * 2) An expensive context switch is required for a software
127 * interrupt to be handled.
128 *
129 * 'Fast' software interrupts
130 *
131 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
132 * the fast mechanism. Threads running either in the kernel or in
133 * userspace will be interrupted, but will not be preempted. When
134 * the soft interrupt completes execution, the interrupted LWP
135 * is resumed. Interrupt dispatch code must provide the minimum
136 * level of context necessary for the soft interrupt to block and
137 * be resumed at a later time. The machine-dependent dispatch
138 * path looks something like the following:
139 *
140 * softintr()
141 * {
142 * go to IPL_HIGH if necessary for switch;
143 * save any necessary registers in a format that can be
144 * restored by cpu_switchto if the softint blocks;
145 * arrange for cpu_switchto() to restore into the
146 * trampoline function;
147 * identify LWP to handle this interrupt;
148 * switch to the LWP's stack;
149 * switch register stacks, if necessary;
150 * assign new value of curlwp;
151 * call MI softint_dispatch, passing old curlwp and IPL
152 * to execute interrupt at;
153 * switch back to old stack;
154 * switch back to old register stack, if necessary;
155 * restore curlwp;
156 * return to interrupted LWP;
157 * }
158 *
159 * If the soft interrupt blocks, a trampoline function is returned
160 * to in the context of the interrupted LWP, as arranged for by
161 * softint():
162 *
163 * softint_ret()
164 * {
165 * unlock soft interrupt LWP;
166 * resume interrupt processing, likely returning to
167 * interrupted LWP or dispatching another, different
168 * interrupt;
169 * }
170 *
171 * Once the soft interrupt has fired (and even if it has blocked),
172 * no further soft interrupts at that level will be triggered by
173 * MI code until the soft interrupt handler has ceased execution.
174 * If a soft interrupt handler blocks and is resumed, it resumes
175 * execution as a normal LWP (kthread) and gains VM context. Only
176 * when it has completed and is ready to fire again will it
177 * interrupt other threads.
178 *
179 * Future directions
180 *
181 * Provide a cheap way to direct software interrupts to remote
182 * CPUs. Provide a way to enqueue work items into the handler
183 * record, removing additional spl calls (see subr_workqueue.c).
184 */
185
186 #include <sys/cdefs.h>
187 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.18 2007/10/18 15:47:00 ad Exp $");
188
189 #include <sys/param.h>
190 #include <sys/malloc.h>
191 #include <sys/proc.h>
192 #include <sys/intr.h>
193 #include <sys/mutex.h>
194 #include <sys/kthread.h>
195 #include <sys/evcnt.h>
196 #include <sys/cpu.h>
197
198 #include <net/netisr.h>
199
200 #include <uvm/uvm_extern.h>
201
202 #define PRI_SOFTSERIAL (PRI_COUNT - 1)
203 #define PRI_SOFTNET (PRI_SOFTSERIAL - schedppq * 1)
204 #define PRI_SOFTBIO (PRI_SOFTSERIAL - schedppq * 2)
205 #define PRI_SOFTCLOCK (PRI_SOFTSERIAL - schedppq * 3)
206
207 /* This could overlap with signal info in struct lwp. */
208 typedef struct softint {
209 SIMPLEQ_HEAD(, softhand) si_q;
210 struct lwp *si_lwp;
211 struct cpu_info *si_cpu;
212 uintptr_t si_machdep;
213 struct evcnt si_evcnt;
214 struct evcnt si_evcnt_block;
215 int si_active;
216 char si_name[8];
217 char si_name_block[8+6];
218 } softint_t;
219
220 typedef struct softhand {
221 SIMPLEQ_ENTRY(softhand) sh_q;
222 void (*sh_func)(void *);
223 void *sh_arg;
224 softint_t *sh_isr;
225 u_int sh_pending;
226 u_int sh_flags;
227 } softhand_t;
228
229 typedef struct softcpu {
230 struct cpu_info *sc_cpu;
231 softint_t sc_int[SOFTINT_COUNT];
232 softhand_t sc_hand[1];
233 } softcpu_t;
234
235 static void softint_thread(void *);
236
237 u_int softint_bytes = 8192;
238 u_int softint_timing;
239 static u_int softint_max;
240 static kmutex_t softint_lock;
241 static void *softint_netisrs[32];
242
243 /*
244 * softint_init_isr:
245 *
246 * Initialize a single interrupt level for a single CPU.
247 */
248 static void
249 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
250 {
251 struct cpu_info *ci;
252 softint_t *si;
253 int error;
254
255 si = &sc->sc_int[level];
256 ci = sc->sc_cpu;
257 si->si_cpu = ci;
258
259 SIMPLEQ_INIT(&si->si_q);
260
261 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
262 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
263 "soft%s/%d", desc, (int)ci->ci_cpuid);
264 if (error != 0)
265 panic("softint_init_isr: error %d", error);
266
267 snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
268 (int)ci->ci_cpuid);
269 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
270 "softint", si->si_name);
271 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
272 desc, (int)ci->ci_cpuid);
273 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
274 "softint", si->si_name_block);
275
276 si->si_lwp->l_private = si;
277 softint_init_md(si->si_lwp, level, &si->si_machdep);
278 #ifdef __HAVE_FAST_SOFTINTS
279 si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
280 #endif
281 }
282 /*
283 * softint_init:
284 *
285 * Initialize per-CPU data structures. Called from mi_cpu_attach().
286 */
287 void
288 softint_init(struct cpu_info *ci)
289 {
290 static struct cpu_info *first;
291 softcpu_t *sc, *scfirst;
292 softhand_t *sh, *shmax;
293
294 if (first == NULL) {
295 /* Boot CPU. */
296 first = ci;
297 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
298 softint_bytes = round_page(softint_bytes);
299 softint_max = (softint_bytes - sizeof(softcpu_t)) /
300 sizeof(softhand_t);
301 }
302
303 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
304 UVM_KMF_WIRED | UVM_KMF_ZERO);
305 if (sc == NULL)
306 panic("softint_init_cpu: cannot allocate memory");
307
308 ci->ci_data.cpu_softcpu = sc;
309 ci->ci_data.cpu_softints = 0;
310 ci->ci_data.cpu_netisrs = 0;
311 sc->sc_cpu = ci;
312
313 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
314 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
315 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
316 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
317
318 if (first != ci) {
319 mutex_enter(&softint_lock);
320 scfirst = first->ci_data.cpu_softcpu;
321 sh = sc->sc_hand;
322 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
323 /* Update pointers for this CPU. */
324 for (shmax = sh + softint_max; sh < shmax; sh++) {
325 if (sh->sh_func == NULL)
326 continue;
327 sh->sh_isr =
328 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
329 }
330 mutex_exit(&softint_lock);
331 } else {
332 /*
333 * Establish handlers for legacy net interrupts.
334 * XXX Needs to go away.
335 */
336 #define DONETISR(n, f) \
337 softint_netisrs[(n)] = \
338 softint_establish(SOFTINT_NET, (void (*)(void *))(f), NULL)
339 #include <net/netisr_dispatch.h>
340 }
341 }
342
343 /*
344 * softint_establish:
345 *
346 * Register a software interrupt handler.
347 */
348 void *
349 softint_establish(u_int flags, void (*func)(void *), void *arg)
350 {
351 CPU_INFO_ITERATOR cii;
352 struct cpu_info *ci;
353 softcpu_t *sc;
354 softhand_t *sh;
355 u_int level, index;
356
357 level = (flags & SOFTINT_LVLMASK);
358 KASSERT(level < SOFTINT_COUNT);
359
360 mutex_enter(&softint_lock);
361
362 /* Find a free slot. */
363 sc = curcpu()->ci_data.cpu_softcpu;
364 for (index = 1; index < softint_max; index++)
365 if (sc->sc_hand[index].sh_func == NULL)
366 break;
367 if (index == softint_max) {
368 mutex_exit(&softint_lock);
369 printf("WARNING: softint_establish: table full, "
370 "increase softint_bytes\n");
371 return NULL;
372 }
373
374 /* Set up the handler on each CPU. */
375 for (CPU_INFO_FOREACH(cii, ci)) {
376 sc = ci->ci_data.cpu_softcpu;
377 sh = &sc->sc_hand[index];
378
379 sh->sh_isr = &sc->sc_int[level];
380 sh->sh_func = func;
381 sh->sh_arg = arg;
382 sh->sh_flags = flags;
383 sh->sh_pending = 0;
384 }
385
386 mutex_exit(&softint_lock);
387
388 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
389 }
390
391 /*
392 * softint_disestablish:
393 *
394 * Unregister a software interrupt handler.
395 */
396 void
397 softint_disestablish(void *arg)
398 {
399 CPU_INFO_ITERATOR cii;
400 struct cpu_info *ci;
401 softcpu_t *sc;
402 softhand_t *sh;
403 uintptr_t offset;
404
405 offset = (uintptr_t)arg;
406 KASSERT(offset != 0 && offset < softint_bytes);
407
408 mutex_enter(&softint_lock);
409
410 /* Clear the handler on each CPU. */
411 for (CPU_INFO_FOREACH(cii, ci)) {
412 sc = ci->ci_data.cpu_softcpu;
413 sh = (softhand_t *)((uint8_t *)sc + offset);
414 KASSERT(sh->sh_func != NULL);
415 KASSERT(sh->sh_pending == 0);
416 sh->sh_func = NULL;
417 }
418
419 mutex_exit(&softint_lock);
420 }
421
422 /*
423 * softint_schedule:
424 *
425 * Trigger a software interrupt. Must be called from a hardware
426 * interrupt handler, or with preemption disabled (since we are
427 * using the value of curcpu()).
428 */
429 void
430 softint_schedule(void *arg)
431 {
432 softhand_t *sh;
433 softint_t *si;
434 uintptr_t offset;
435 int s;
436
437 /* Find the handler record for this CPU. */
438 offset = (uintptr_t)arg;
439 KASSERT(offset != 0 && offset < softint_bytes);
440 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
441
442 /* If it's already pending there's nothing to do. */
443 if (sh->sh_pending)
444 return;
445
446 /*
447 * Enqueue the handler into the LWP's pending list.
448 * If the LWP is completely idle, then make it run.
449 */
450 s = splhigh();
451 if (!sh->sh_pending) {
452 si = sh->sh_isr;
453 sh->sh_pending = 1;
454 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
455 if (si->si_active == 0) {
456 si->si_active = 1;
457 softint_trigger(si->si_machdep);
458 }
459 }
460 splx(s);
461 }
462
463 /*
464 * softint_execute:
465 *
466 * Invoke handlers for the specified soft interrupt.
467 * Must be entered at splhigh. Will drop the priority
468 * to the level specified, but returns back at splhigh.
469 */
470 static inline void
471 softint_execute(softint_t *si, lwp_t *l, int s)
472 {
473 softhand_t *sh;
474 bool havelock;
475
476 #ifdef __HAVE_FAST_SOFTINTS
477 KASSERT(si->si_lwp == curlwp);
478 #else
479 /* May be running in user context. */
480 #endif
481 KASSERT(si->si_cpu == curcpu());
482 KASSERT(si->si_lwp->l_wchan == NULL);
483 KASSERT(si->si_active);
484
485 havelock = false;
486
487 /*
488 * Note: due to priority inheritance we may have interrupted a
489 * higher priority LWP. Since the soft interrupt must be quick
490 * and is non-preemptable, we don't bother yielding.
491 */
492
493 while (!SIMPLEQ_EMPTY(&si->si_q)) {
494 /*
495 * Pick the longest waiting handler to run. We block
496 * interrupts but do not lock in order to do this, as
497 * we are protecting against the local CPU only.
498 */
499 sh = SIMPLEQ_FIRST(&si->si_q);
500 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
501 sh->sh_pending = 0;
502 splx(s);
503
504 /* Run the handler. */
505 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
506 KERNEL_LOCK(1, l);
507 havelock = true;
508 }
509 (*sh->sh_func)(sh->sh_arg);
510
511 (void)splhigh();
512 }
513
514 if (havelock) {
515 KERNEL_UNLOCK_ONE(l);
516 }
517
518 /*
519 * Unlocked, but only for statistics.
520 * Should be per-CPU to prevent cache ping-pong.
521 */
522 uvmexp.softs++;
523
524 si->si_evcnt.ev_count++;
525 si->si_active = 0;
526 }
527
528 /*
529 * softint_block:
530 *
531 * Update statistics when the soft interrupt blocks.
532 */
533 void
534 softint_block(lwp_t *l)
535 {
536 softint_t *si = l->l_private;
537
538 KASSERT((l->l_pflag & LP_INTR) != 0);
539 si->si_evcnt_block.ev_count++;
540 }
541
542 /*
543 * schednetisr:
544 *
545 * Trigger a legacy network interrupt. XXX Needs to go away.
546 */
547 void
548 schednetisr(int isr)
549 {
550
551 softint_schedule(softint_netisrs[isr]);
552 }
553
554 #ifndef __HAVE_FAST_SOFTINTS
555
556 /*
557 * softint_init_md:
558 *
559 * Slow path: perform machine-dependent initialization.
560 */
561 void
562 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
563 {
564 softint_t *si;
565
566 *machdep = (1 << level);
567 si = l->l_private;
568
569 lwp_lock(l);
570 /* Cheat and make the KASSERT in softint_thread() happy. */
571 si->si_active = 1;
572 l->l_stat = LSRUN;
573 sched_enqueue(l, false);
574 lwp_unlock(l);
575 }
576
577 /*
578 * softint_trigger:
579 *
580 * Slow path: cause a soft interrupt handler to begin executing.
581 * Called at IPL_HIGH.
582 */
583 void
584 softint_trigger(uintptr_t machdep)
585 {
586 struct cpu_info *ci;
587 lwp_t *l;
588
589 l = curlwp;
590 ci = l->l_cpu;
591 ci->ci_data.cpu_softints |= machdep;
592 if (l == ci->ci_data.cpu_idlelwp) {
593 cpu_need_resched(ci, 0);
594 } else {
595 /* MI equivalent of aston() */
596 cpu_signotify(l);
597 }
598 }
599
600 /*
601 * softint_thread:
602 *
603 * Slow path: MI software interrupt dispatch.
604 */
605 void
606 softint_thread(void *cookie)
607 {
608 softint_t *si;
609 lwp_t *l;
610 int s;
611
612 l = curlwp;
613 si = l->l_private;
614
615 for (;;) {
616 /*
617 * Clear pending status and run it. We must drop the
618 * spl before mi_switch(), since IPL_HIGH may be higher
619 * than IPL_SCHED (and it is not safe to switch at a
620 * higher level).
621 */
622 s = splhigh();
623 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
624 softint_execute(si, l, s);
625 splx(s);
626
627 lwp_lock(l);
628 l->l_stat = LSIDL;
629 mi_switch(l);
630 }
631 }
632
633 /*
634 * softint_picklwp:
635 *
636 * Slow path: called from mi_switch() to pick the highest priority
637 * soft interrupt LWP that needs to run.
638 */
639 lwp_t *
640 softint_picklwp(void)
641 {
642 struct cpu_info *ci;
643 u_int mask;
644 softint_t *si;
645 lwp_t *l;
646
647 ci = curcpu();
648 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
649 mask = ci->ci_data.cpu_softints;
650
651 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
652 l = si[SOFTINT_SERIAL].si_lwp;
653 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
654 l = si[SOFTINT_NET].si_lwp;
655 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
656 l = si[SOFTINT_BIO].si_lwp;
657 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
658 l = si[SOFTINT_CLOCK].si_lwp;
659 } else {
660 panic("softint_picklwp");
661 }
662
663 return l;
664 }
665
666 /*
667 * softint_overlay:
668 *
669 * Slow path: called from lwp_userret() to run a soft interrupt
670 * within the context of a user thread. If the LWP blocks,
671 * priority will be elevated in sched_kpri().
672 */
673 void
674 softint_overlay(void)
675 {
676 struct cpu_info *ci;
677 u_int softints;
678 softint_t *si;
679 lwp_t *l;
680 int s;
681
682 l = curlwp;
683 ci = l->l_cpu;
684 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
685
686 KASSERT((l->l_pflag & LP_INTR) == 0);
687
688 l->l_pflag |= LP_INTR;
689 s = splhigh();
690 while ((softints = ci->ci_data.cpu_softints) != 0) {
691 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
692 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
693 softint_execute(&si[SOFTINT_SERIAL], l, safepri);
694 continue;
695 }
696 if ((softints & (1 << SOFTINT_NET)) != 0) {
697 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
698 softint_execute(&si[SOFTINT_NET], l, safepri);
699 continue;
700 }
701 if ((softints & (1 << SOFTINT_BIO)) != 0) {
702 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
703 softint_execute(&si[SOFTINT_BIO], l, safepri);
704 continue;
705 }
706 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
707 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
708 softint_execute(&si[SOFTINT_CLOCK], l, safepri);
709 continue;
710 }
711 }
712 splx(s);
713 l->l_pflag &= ~LP_INTR;
714 }
715
716 /*
717 * softint_kpri:
718 *
719 * Adjust priority for a blocking user LWP that is handling a
720 * soft interrupt.
721 */
722 pri_t
723 softint_kpri(lwp_t *l)
724 {
725
726 /* No point doing anything more fair / complicated. */
727 return PRI_SOFTSERIAL;
728 }
729
730 #else /* !__HAVE_FAST_SOFTINTS */
731
732 /*
733 * softint_thread:
734 *
735 * Fast path: the LWP is switched to without restoring any state,
736 * so we should not arrive here - there is a direct handoff between
737 * the interrupt stub and softint_dispatch().
738 */
739 void
740 softint_thread(void *cookie)
741 {
742
743 panic("softint_thread");
744 }
745
746 /*
747 * softint_dispatch:
748 *
749 * Fast path: entry point from machine-dependent code.
750 */
751 void
752 softint_dispatch(lwp_t *pinned, int s)
753 {
754 struct timeval now;
755 softint_t *si;
756 u_int timing;
757 lwp_t *l;
758
759 l = curlwp;
760 si = l->l_private;
761
762 /*
763 * Note the interrupted LWP, and mark the current LWP as running
764 * before proceeding. Although this must as a rule be done with
765 * the LWP locked, at this point no external agents will want to
766 * modify the interrupt LWP's state.
767 */
768 timing = (softint_timing ? LW_TIMEINTR : 0);
769 l->l_switchto = pinned;
770 l->l_stat = LSONPROC;
771 l->l_flag |= (LW_RUNNING | timing);
772
773 /*
774 * Dispatch the interrupt. If softints are being timed, charge
775 * for it.
776 */
777 if (timing)
778 microtime(&l->l_stime);
779 softint_execute(si, l, s);
780 if (timing) {
781 microtime(&now);
782 updatertime(l, &now);
783 l->l_flag &= ~LW_TIMEINTR;
784 }
785
786 /*
787 * If we blocked while handling the interrupt, the pinned LWP is
788 * gone so switch to the idle LWP. It will select a new LWP to
789 * run.
790 *
791 * We must drop the priority level as switching at IPL_HIGH could
792 * deadlock the system. We have already set si->si_active = 0,
793 * which means another interrupt at this level can be triggered.
794 * That's not be a problem: we are lowering to level 's' which will
795 * prevent softint_dispatch() from being reentered at level 's',
796 * until the priority is finally dropped to IPL_NONE on entry to
797 * the idle loop.
798 */
799 l->l_stat = LSIDL;
800 if (l->l_switchto == NULL) {
801 splx(s);
802 pmap_deactivate(l);
803 lwp_exit_switchaway(l);
804 /* NOTREACHED */
805 }
806 l->l_switchto = NULL;
807 l->l_flag &= ~LW_RUNNING;
808 }
809
810 #endif /* !__HAVE_FAST_SOFTINTS */
811