Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.1.2.18
      1 /*	$NetBSD: kern_softint.c,v 1.1.2.18 2007/10/18 15:47:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Generic software interrupt framework.
     41  *
     42  * Overview
     43  *
     44  *	The soft interrupt framework provides a mechanism to schedule a
     45  *	low priority callback that runs with thread context.  It allows
     46  *	for dynamic registration of software interrupts, and for fair
     47  *	queueing and prioritization of those interrupts.  The callbacks
     48  *	can be scheduled to run from nearly any point in the kernel: by
     49  *	code running with thread context, by code running from a
     50  *	hardware interrupt handler, and at any interrupt priority
     51  *	level.
     52  *
     53  * Priority levels
     54  *
     55  *	Since soft interrupt dispatch can be tied to the underlying
     56  *	architecture's interrupt dispatch code, it can be limited
     57  *	both by the capabilities of the hardware and the capabilities
     58  *	of the interrupt dispatch code itself.  The number of priority
     59  *	levels is restricted to four.  In order of priority (lowest to
     60  *	highest) the levels are: clock, bio, net, serial.
     61  *
     62  *	The names are symbolic and in isolation do not have any direct
     63  *	connection with a particular kind of device activity: they are
     64  *	only meant as a guide.
     65  *
     66  *	The four priority levels map directly to scheduler priority
     67  *	levels, and where the architecture implements 'fast' software
     68  *	interrupts, they also map onto interrupt priorities.  The
     69  *	interrupt priorities are intended to be hidden from machine
     70  *	independent code, which should use thread-safe mechanisms to
     71  *	synchronize with software interrupts (for example: mutexes).
     72  *
     73  * Capabilities
     74  *
     75  *	Software interrupts run with limited machine context.  In
     76  *	particular, they do not posess any address space context.  They
     77  *	should not try to operate on user space addresses, or to use
     78  *	virtual memory facilities other than those noted as interrupt
     79  *	safe.
     80  *
     81  *	Unlike hardware interrupts, software interrupts do have thread
     82  *	context.  They may block on synchronization objects, sleep, and
     83  *	resume execution at a later time.
     84  *
     85  *	Since software interrupts are a limited resource and run with
     86  *	higher priority than most other LWPs in the system, all
     87  *	block-and-resume activity by a software interrupt must be kept
     88  *	short to allow futher processing at that level to continue.  By
     89  *	extension, code running with process context must take care to
     90  *	ensure that any lock that may be taken from a software interrupt
     91  *	can not be held for more than a short period of time.
     92  *
     93  *	The kernel does not allow software interrupts to use facilities
     94  *	or perform actions that may block for a significant amount of
     95  *	time.  This means that it's not valid for a software interrupt
     96  *	to: sleep on condition variables, use the lockmgr() facility,
     97  *	or wait for resources to become available (for example,
     98  *	memory).
     99  *
    100  * Per-CPU operation
    101  *
    102  *	If a soft interrupt is triggered on a CPU, it can only be
    103  *	dispatched on the same CPU.  Each LWP dedicated to handling a
    104  *	soft interrupt is bound to its home CPU, so if the LWP blocks
    105  *	and needs to run again, it can only run there.  Nearly all data
    106  *	structures used to manage software interrupts are per-CPU.
    107  *
    108  *	The per-CPU requirement is intended to reduce "ping-pong" of
    109  *	cache lines between CPUs: lines occupied by data structures
    110  *	used to manage the soft interrupts, and lines occupied by data
    111  *	items being passed down to the soft interrupt.  As a positive
    112  *	side effect, this also means that the soft interrupt dispatch
    113  *	code does not need to to use spinlocks to synchronize.
    114  *
    115  * Generic implementation
    116  *
    117  *	A generic, low performance implementation is provided that
    118  *	works across all architectures, with no machine-dependent
    119  *	modifications needed.  This implementation uses the scheduler,
    120  *	and so has a number of restrictions:
    121  *
    122  *	1) The software interrupts are not currently preemptive, so
    123  *	must wait for the currently executing LWP to yield the CPU.
    124  *	This can introduce latency.
    125  *
    126  *	2) An expensive context switch is required for a software
    127  *	interrupt to be handled.
    128  *
    129  * 'Fast' software interrupts
    130  *
    131  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    132  *	the fast mechanism.  Threads running either in the kernel or in
    133  *	userspace will be interrupted, but will not be preempted.  When
    134  *	the soft interrupt completes execution, the interrupted LWP
    135  *	is resumed.  Interrupt dispatch code must provide the minimum
    136  *	level of context necessary for the soft interrupt to block and
    137  *	be resumed at a later time.  The machine-dependent dispatch
    138  *	path looks something like the following:
    139  *
    140  *	softintr()
    141  *	{
    142  *		go to IPL_HIGH if necessary for switch;
    143  *		save any necessary registers in a format that can be
    144  *		    restored by cpu_switchto if the softint blocks;
    145  *		arrange for cpu_switchto() to restore into the
    146  *		    trampoline function;
    147  *		identify LWP to handle this interrupt;
    148  *		switch to the LWP's stack;
    149  *		switch register stacks, if necessary;
    150  *		assign new value of curlwp;
    151  *		call MI softint_dispatch, passing old curlwp and IPL
    152  *		    to execute interrupt at;
    153  *		switch back to old stack;
    154  *		switch back to old register stack, if necessary;
    155  *		restore curlwp;
    156  *		return to interrupted LWP;
    157  *	}
    158  *
    159  *	If the soft interrupt blocks, a trampoline function is returned
    160  *	to in the context of the interrupted LWP, as arranged for by
    161  *	softint():
    162  *
    163  *	softint_ret()
    164  *	{
    165  *		unlock soft interrupt LWP;
    166  *		resume interrupt processing, likely returning to
    167  *		    interrupted LWP or dispatching another, different
    168  *		    interrupt;
    169  *	}
    170  *
    171  *	Once the soft interrupt has fired (and even if it has blocked),
    172  *	no further soft interrupts at that level will be triggered by
    173  *	MI code until the soft interrupt handler has ceased execution.
    174  *	If a soft interrupt handler blocks and is resumed, it resumes
    175  *	execution as a normal LWP (kthread) and gains VM context.  Only
    176  *	when it has completed and is ready to fire again will it
    177  *	interrupt other threads.
    178  *
    179  * Future directions
    180  *
    181  *	Provide a cheap way to direct software interrupts to remote
    182  *	CPUs.  Provide a way to enqueue work items into the handler
    183  *	record,	removing additional spl calls (see subr_workqueue.c).
    184  */
    185 
    186 #include <sys/cdefs.h>
    187 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.18 2007/10/18 15:47:00 ad Exp $");
    188 
    189 #include <sys/param.h>
    190 #include <sys/malloc.h>
    191 #include <sys/proc.h>
    192 #include <sys/intr.h>
    193 #include <sys/mutex.h>
    194 #include <sys/kthread.h>
    195 #include <sys/evcnt.h>
    196 #include <sys/cpu.h>
    197 
    198 #include <net/netisr.h>
    199 
    200 #include <uvm/uvm_extern.h>
    201 
    202 #define	PRI_SOFTSERIAL	(PRI_COUNT - 1)
    203 #define	PRI_SOFTNET	(PRI_SOFTSERIAL - schedppq * 1)
    204 #define	PRI_SOFTBIO	(PRI_SOFTSERIAL - schedppq * 2)
    205 #define	PRI_SOFTCLOCK	(PRI_SOFTSERIAL - schedppq * 3)
    206 
    207 /* This could overlap with signal info in struct lwp. */
    208 typedef struct softint {
    209 	SIMPLEQ_HEAD(, softhand) si_q;
    210 	struct lwp		*si_lwp;
    211 	struct cpu_info		*si_cpu;
    212 	uintptr_t		si_machdep;
    213 	struct evcnt		si_evcnt;
    214 	struct evcnt		si_evcnt_block;
    215 	int			si_active;
    216 	char			si_name[8];
    217 	char			si_name_block[8+6];
    218 } softint_t;
    219 
    220 typedef struct softhand {
    221 	SIMPLEQ_ENTRY(softhand)	sh_q;
    222 	void			(*sh_func)(void *);
    223 	void			*sh_arg;
    224 	softint_t		*sh_isr;
    225 	u_int			sh_pending;
    226 	u_int			sh_flags;
    227 } softhand_t;
    228 
    229 typedef struct softcpu {
    230 	struct cpu_info		*sc_cpu;
    231 	softint_t		sc_int[SOFTINT_COUNT];
    232 	softhand_t		sc_hand[1];
    233 } softcpu_t;
    234 
    235 static void	softint_thread(void *);
    236 
    237 u_int		softint_bytes = 8192;
    238 u_int		softint_timing;
    239 static u_int	softint_max;
    240 static kmutex_t	softint_lock;
    241 static void	*softint_netisrs[32];
    242 
    243 /*
    244  * softint_init_isr:
    245  *
    246  *	Initialize a single interrupt level for a single CPU.
    247  */
    248 static void
    249 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    250 {
    251 	struct cpu_info *ci;
    252 	softint_t *si;
    253 	int error;
    254 
    255 	si = &sc->sc_int[level];
    256 	ci = sc->sc_cpu;
    257 	si->si_cpu = ci;
    258 
    259 	SIMPLEQ_INIT(&si->si_q);
    260 
    261 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    262 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    263 	    "soft%s/%d", desc, (int)ci->ci_cpuid);
    264 	if (error != 0)
    265 		panic("softint_init_isr: error %d", error);
    266 
    267 	snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
    268 	    (int)ci->ci_cpuid);
    269 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
    270 	   "softint", si->si_name);
    271 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
    272 	    desc, (int)ci->ci_cpuid);
    273 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
    274 	   "softint", si->si_name_block);
    275 
    276 	si->si_lwp->l_private = si;
    277 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    278 #ifdef __HAVE_FAST_SOFTINTS
    279 	si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
    280 #endif
    281 }
    282 /*
    283  * softint_init:
    284  *
    285  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    286  */
    287 void
    288 softint_init(struct cpu_info *ci)
    289 {
    290 	static struct cpu_info *first;
    291 	softcpu_t *sc, *scfirst;
    292 	softhand_t *sh, *shmax;
    293 
    294 	if (first == NULL) {
    295 		/* Boot CPU. */
    296 		first = ci;
    297 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    298 		softint_bytes = round_page(softint_bytes);
    299 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    300 		    sizeof(softhand_t);
    301 	}
    302 
    303 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    304 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    305 	if (sc == NULL)
    306 		panic("softint_init_cpu: cannot allocate memory");
    307 
    308 	ci->ci_data.cpu_softcpu = sc;
    309 	ci->ci_data.cpu_softints = 0;
    310 	ci->ci_data.cpu_netisrs = 0;
    311 	sc->sc_cpu = ci;
    312 
    313 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    314 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    315 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    316 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    317 
    318 	if (first != ci) {
    319 		mutex_enter(&softint_lock);
    320 		scfirst = first->ci_data.cpu_softcpu;
    321 		sh = sc->sc_hand;
    322 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    323 		/* Update pointers for this CPU. */
    324 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    325 			if (sh->sh_func == NULL)
    326 				continue;
    327 			sh->sh_isr =
    328 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    329 		}
    330 		mutex_exit(&softint_lock);
    331 	} else {
    332 		/*
    333 		 * Establish handlers for legacy net interrupts.
    334 		 * XXX Needs to go away.
    335 		 */
    336 #define DONETISR(n, f)							\
    337     softint_netisrs[(n)] = 						\
    338         softint_establish(SOFTINT_NET, (void (*)(void *))(f), NULL)
    339 #include <net/netisr_dispatch.h>
    340 	}
    341 }
    342 
    343 /*
    344  * softint_establish:
    345  *
    346  *	Register a software interrupt handler.
    347  */
    348 void *
    349 softint_establish(u_int flags, void (*func)(void *), void *arg)
    350 {
    351 	CPU_INFO_ITERATOR cii;
    352 	struct cpu_info *ci;
    353 	softcpu_t *sc;
    354 	softhand_t *sh;
    355 	u_int level, index;
    356 
    357 	level = (flags & SOFTINT_LVLMASK);
    358 	KASSERT(level < SOFTINT_COUNT);
    359 
    360 	mutex_enter(&softint_lock);
    361 
    362 	/* Find a free slot. */
    363 	sc = curcpu()->ci_data.cpu_softcpu;
    364 	for (index = 1; index < softint_max; index++)
    365 		if (sc->sc_hand[index].sh_func == NULL)
    366 			break;
    367 	if (index == softint_max) {
    368 		mutex_exit(&softint_lock);
    369 		printf("WARNING: softint_establish: table full, "
    370 		    "increase softint_bytes\n");
    371 		return NULL;
    372 	}
    373 
    374 	/* Set up the handler on each CPU. */
    375 	for (CPU_INFO_FOREACH(cii, ci)) {
    376 		sc = ci->ci_data.cpu_softcpu;
    377 		sh = &sc->sc_hand[index];
    378 
    379 		sh->sh_isr = &sc->sc_int[level];
    380 		sh->sh_func = func;
    381 		sh->sh_arg = arg;
    382 		sh->sh_flags = flags;
    383 		sh->sh_pending = 0;
    384 	}
    385 
    386 	mutex_exit(&softint_lock);
    387 
    388 	return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    389 }
    390 
    391 /*
    392  * softint_disestablish:
    393  *
    394  *	Unregister a software interrupt handler.
    395  */
    396 void
    397 softint_disestablish(void *arg)
    398 {
    399 	CPU_INFO_ITERATOR cii;
    400 	struct cpu_info *ci;
    401 	softcpu_t *sc;
    402 	softhand_t *sh;
    403 	uintptr_t offset;
    404 
    405 	offset = (uintptr_t)arg;
    406 	KASSERT(offset != 0 && offset < softint_bytes);
    407 
    408 	mutex_enter(&softint_lock);
    409 
    410 	/* Clear the handler on each CPU. */
    411 	for (CPU_INFO_FOREACH(cii, ci)) {
    412 		sc = ci->ci_data.cpu_softcpu;
    413 		sh = (softhand_t *)((uint8_t *)sc + offset);
    414 		KASSERT(sh->sh_func != NULL);
    415 		KASSERT(sh->sh_pending == 0);
    416 		sh->sh_func = NULL;
    417 	}
    418 
    419 	mutex_exit(&softint_lock);
    420 }
    421 
    422 /*
    423  * softint_schedule:
    424  *
    425  *	Trigger a software interrupt.  Must be called from a hardware
    426  *	interrupt handler, or with preemption disabled (since we are
    427  *	using the value of curcpu()).
    428  */
    429 void
    430 softint_schedule(void *arg)
    431 {
    432 	softhand_t *sh;
    433 	softint_t *si;
    434 	uintptr_t offset;
    435 	int s;
    436 
    437 	/* Find the handler record for this CPU. */
    438 	offset = (uintptr_t)arg;
    439 	KASSERT(offset != 0 && offset < softint_bytes);
    440 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    441 
    442 	/* If it's already pending there's nothing to do. */
    443 	if (sh->sh_pending)
    444 		return;
    445 
    446 	/*
    447 	 * Enqueue the handler into the LWP's pending list.
    448 	 * If the LWP is completely idle, then make it run.
    449 	 */
    450 	s = splhigh();
    451 	if (!sh->sh_pending) {
    452 		si = sh->sh_isr;
    453 		sh->sh_pending = 1;
    454 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    455 		if (si->si_active == 0) {
    456 			si->si_active = 1;
    457 			softint_trigger(si->si_machdep);
    458 		}
    459 	}
    460 	splx(s);
    461 }
    462 
    463 /*
    464  * softint_execute:
    465  *
    466  *	Invoke handlers for the specified soft interrupt.
    467  *	Must be entered at splhigh.  Will drop the priority
    468  *	to the level specified, but returns back at splhigh.
    469  */
    470 static inline void
    471 softint_execute(softint_t *si, lwp_t *l, int s)
    472 {
    473 	softhand_t *sh;
    474 	bool havelock;
    475 
    476 #ifdef __HAVE_FAST_SOFTINTS
    477 	KASSERT(si->si_lwp == curlwp);
    478 #else
    479 	/* May be running in user context. */
    480 #endif
    481 	KASSERT(si->si_cpu == curcpu());
    482 	KASSERT(si->si_lwp->l_wchan == NULL);
    483 	KASSERT(si->si_active);
    484 
    485 	havelock = false;
    486 
    487 	/*
    488 	 * Note: due to priority inheritance we may have interrupted a
    489 	 * higher priority LWP.  Since the soft interrupt must be quick
    490 	 * and is non-preemptable, we don't bother yielding.
    491 	 */
    492 
    493 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    494 		/*
    495 		 * Pick the longest waiting handler to run.  We block
    496 		 * interrupts but do not lock in order to do this, as
    497 		 * we are protecting against the local CPU only.
    498 		 */
    499 		sh = SIMPLEQ_FIRST(&si->si_q);
    500 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    501 		sh->sh_pending = 0;
    502 		splx(s);
    503 
    504 		/* Run the handler. */
    505 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
    506 			KERNEL_LOCK(1, l);
    507 			havelock = true;
    508 		}
    509 		(*sh->sh_func)(sh->sh_arg);
    510 
    511 		(void)splhigh();
    512 	}
    513 
    514 	if (havelock) {
    515 		KERNEL_UNLOCK_ONE(l);
    516 	}
    517 
    518 	/*
    519 	 * Unlocked, but only for statistics.
    520 	 * Should be per-CPU to prevent cache ping-pong.
    521 	 */
    522 	uvmexp.softs++;
    523 
    524 	si->si_evcnt.ev_count++;
    525 	si->si_active = 0;
    526 }
    527 
    528 /*
    529  * softint_block:
    530  *
    531  *	Update statistics when the soft interrupt blocks.
    532  */
    533 void
    534 softint_block(lwp_t *l)
    535 {
    536 	softint_t *si = l->l_private;
    537 
    538 	KASSERT((l->l_pflag & LP_INTR) != 0);
    539 	si->si_evcnt_block.ev_count++;
    540 }
    541 
    542 /*
    543  * schednetisr:
    544  *
    545  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    546  */
    547 void
    548 schednetisr(int isr)
    549 {
    550 
    551 	softint_schedule(softint_netisrs[isr]);
    552 }
    553 
    554 #ifndef __HAVE_FAST_SOFTINTS
    555 
    556 /*
    557  * softint_init_md:
    558  *
    559  *	Slow path: perform machine-dependent initialization.
    560  */
    561 void
    562 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    563 {
    564 	softint_t *si;
    565 
    566 	*machdep = (1 << level);
    567 	si = l->l_private;
    568 
    569 	lwp_lock(l);
    570 	/* Cheat and make the KASSERT in softint_thread() happy. */
    571 	si->si_active = 1;
    572 	l->l_stat = LSRUN;
    573 	sched_enqueue(l, false);
    574 	lwp_unlock(l);
    575 }
    576 
    577 /*
    578  * softint_trigger:
    579  *
    580  *	Slow path: cause a soft interrupt handler to begin executing.
    581  *	Called at IPL_HIGH.
    582  */
    583 void
    584 softint_trigger(uintptr_t machdep)
    585 {
    586 	struct cpu_info *ci;
    587 	lwp_t *l;
    588 
    589 	l = curlwp;
    590 	ci = l->l_cpu;
    591 	ci->ci_data.cpu_softints |= machdep;
    592 	if (l == ci->ci_data.cpu_idlelwp) {
    593 		cpu_need_resched(ci, 0);
    594 	} else {
    595 		/* MI equivalent of aston() */
    596 		cpu_signotify(l);
    597 	}
    598 }
    599 
    600 /*
    601  * softint_thread:
    602  *
    603  *	Slow path: MI software interrupt dispatch.
    604  */
    605 void
    606 softint_thread(void *cookie)
    607 {
    608 	softint_t *si;
    609 	lwp_t *l;
    610 	int s;
    611 
    612 	l = curlwp;
    613 	si = l->l_private;
    614 
    615 	for (;;) {
    616 		/*
    617 		 * Clear pending status and run it.  We must drop the
    618 		 * spl before mi_switch(), since IPL_HIGH may be higher
    619 		 * than IPL_SCHED (and it is not safe to switch at a
    620 		 * higher level).
    621 		 */
    622 		s = splhigh();
    623 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    624 		softint_execute(si, l, s);
    625 		splx(s);
    626 
    627 		lwp_lock(l);
    628 		l->l_stat = LSIDL;
    629 		mi_switch(l);
    630 	}
    631 }
    632 
    633 /*
    634  * softint_picklwp:
    635  *
    636  *	Slow path: called from mi_switch() to pick the highest priority
    637  *	soft interrupt LWP that needs to run.
    638  */
    639 lwp_t *
    640 softint_picklwp(void)
    641 {
    642 	struct cpu_info *ci;
    643 	u_int mask;
    644 	softint_t *si;
    645 	lwp_t *l;
    646 
    647 	ci = curcpu();
    648 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    649 	mask = ci->ci_data.cpu_softints;
    650 
    651 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    652 		l = si[SOFTINT_SERIAL].si_lwp;
    653 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    654 		l = si[SOFTINT_NET].si_lwp;
    655 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    656 		l = si[SOFTINT_BIO].si_lwp;
    657 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    658 		l = si[SOFTINT_CLOCK].si_lwp;
    659 	} else {
    660 		panic("softint_picklwp");
    661 	}
    662 
    663 	return l;
    664 }
    665 
    666 /*
    667  * softint_overlay:
    668  *
    669  *	Slow path: called from lwp_userret() to run a soft interrupt
    670  *	within the context of a user thread.  If the LWP blocks,
    671  *	priority will be elevated in sched_kpri().
    672  */
    673 void
    674 softint_overlay(void)
    675 {
    676 	struct cpu_info *ci;
    677 	u_int softints;
    678 	softint_t *si;
    679 	lwp_t *l;
    680 	int s;
    681 
    682 	l = curlwp;
    683 	ci = l->l_cpu;
    684 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    685 
    686 	KASSERT((l->l_pflag & LP_INTR) == 0);
    687 
    688 	l->l_pflag |= LP_INTR;
    689 	s = splhigh();
    690 	while ((softints = ci->ci_data.cpu_softints) != 0) {
    691 		if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
    692 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
    693 			softint_execute(&si[SOFTINT_SERIAL], l, safepri);
    694 			continue;
    695 		}
    696 		if ((softints & (1 << SOFTINT_NET)) != 0) {
    697 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
    698 			softint_execute(&si[SOFTINT_NET], l, safepri);
    699 			continue;
    700 		}
    701 		if ((softints & (1 << SOFTINT_BIO)) != 0) {
    702 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
    703 			softint_execute(&si[SOFTINT_BIO], l, safepri);
    704 			continue;
    705 		}
    706 		if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
    707 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
    708 			softint_execute(&si[SOFTINT_CLOCK], l, safepri);
    709 			continue;
    710 		}
    711 	}
    712 	splx(s);
    713 	l->l_pflag &= ~LP_INTR;
    714 }
    715 
    716 /*
    717  * softint_kpri:
    718  *
    719  *	Adjust priority for a blocking user LWP that is handling a
    720  *	soft interrupt.
    721  */
    722 pri_t
    723 softint_kpri(lwp_t *l)
    724 {
    725 
    726 	/* No point doing anything more fair / complicated. */
    727 	return PRI_SOFTSERIAL;
    728 }
    729 
    730 #else	/*  !__HAVE_FAST_SOFTINTS */
    731 
    732 /*
    733  * softint_thread:
    734  *
    735  *	Fast path: the LWP is switched to without restoring any state,
    736  *	so we should not arrive here - there is a direct handoff between
    737  *	the interrupt stub and softint_dispatch().
    738  */
    739 void
    740 softint_thread(void *cookie)
    741 {
    742 
    743 	panic("softint_thread");
    744 }
    745 
    746 /*
    747  * softint_dispatch:
    748  *
    749  *	Fast path: entry point from machine-dependent code.
    750  */
    751 void
    752 softint_dispatch(lwp_t *pinned, int s)
    753 {
    754 	struct timeval now;
    755 	softint_t *si;
    756 	u_int timing;
    757 	lwp_t *l;
    758 
    759 	l = curlwp;
    760 	si = l->l_private;
    761 
    762 	/*
    763 	 * Note the interrupted LWP, and mark the current LWP as running
    764 	 * before proceeding.  Although this must as a rule be done with
    765 	 * the LWP locked, at this point no external agents will want to
    766 	 * modify the interrupt LWP's state.
    767 	 */
    768 	timing = (softint_timing ? LW_TIMEINTR : 0);
    769 	l->l_switchto = pinned;
    770 	l->l_stat = LSONPROC;
    771 	l->l_flag |= (LW_RUNNING | timing);
    772 
    773 	/*
    774 	 * Dispatch the interrupt.  If softints are being timed, charge
    775 	 * for it.
    776 	 */
    777 	if (timing)
    778 		microtime(&l->l_stime);
    779 	softint_execute(si, l, s);
    780 	if (timing) {
    781 		microtime(&now);
    782 		updatertime(l, &now);
    783 		l->l_flag &= ~LW_TIMEINTR;
    784 	}
    785 
    786 	/*
    787 	 * If we blocked while handling the interrupt, the pinned LWP is
    788 	 * gone so switch to the idle LWP.  It will select a new LWP to
    789 	 * run.
    790 	 *
    791 	 * We must drop the priority level as switching at IPL_HIGH could
    792 	 * deadlock the system.  We have already set si->si_active = 0,
    793 	 * which means another interrupt at this level can be triggered.
    794 	 * That's not be a problem: we are lowering to level 's' which will
    795 	 * prevent softint_dispatch() from being reentered at level 's',
    796 	 * until the priority is finally dropped to IPL_NONE on entry to
    797 	 * the idle loop.
    798 	 */
    799 	l->l_stat = LSIDL;
    800 	if (l->l_switchto == NULL) {
    801 		splx(s);
    802 		pmap_deactivate(l);
    803 		lwp_exit_switchaway(l);
    804 		/* NOTREACHED */
    805 	}
    806 	l->l_switchto = NULL;
    807 	l->l_flag &= ~LW_RUNNING;
    808 }
    809 
    810 #endif	/* !__HAVE_FAST_SOFTINTS */
    811