Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.1.2.2
      1 /*	$NetBSD: kern_softint.c,v 1.1.2.2 2007/07/01 21:31:32 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Generic software interrupt framework.
     41  *
     42  * Overview
     43  *
     44  *	The soft interrupt framework provides a mechanism to schedule a
     45  *	low priority callback that runs with thread context.  It allows
     46  *	for dynamic registration of software interrupts, and for fair
     47  *	queueing and prioritization of those interrupts.  The callbacks
     48  *	can be scheduled to run from nearly any point in the kernel: by
     49  *	code running with thread context, by code running from a
     50  *	hardware interrupt handler, and at any interrupt priority
     51  *	level.
     52  *
     53  * Priority levels
     54  *
     55  *	Since soft interrupt dispatch can be tied to the underlying
     56  *	architecture's interrupt dispatch code, it may be limited by
     57  *	both by the capabilities of the hardware and the capabilities
     58  *	of the interrupt dispatch code itself.  Therefore the number of
     59  *	levels is restricted to four.  In order of priority (lowest to
     60  *	highest) the levels are: clock, bio, net, serial.
     61  *
     62  *	The symbolic names are provided only as guide and in isolation
     63  *	do not have any direct connection with a particular kind of
     64  *	device activity.
     65  *
     66  *	The four priority levels map directly to scheduler priority
     67  *	levels, and where the architecture implements 'fast' software
     68  *	interrupts, they also map onto interrupt priorities.  The
     69  *	interrupt priorities are intended to be hidden from machine
     70  *	independent code, which should use multiprocessor and
     71  *	preemption aware mechanisms to synchronize with software
     72  *	interrupts (for example: mutexes).
     73  *
     74  * Capabilities
     75  *
     76  *	As with hardware interrupt handlers, software interrupts run
     77  *	with limited machine context.  In particular, they do not
     78  *	posess any VM (virtual memory) context, and should therefore
     79  *	not try to operate on user space addresses, or to use virtual
     80  *	memory facilities other than those noted as interrupt safe.
     81  *
     82  *	Unlike hardware interrupts, software interrupts do have thread
     83  *	context.  They may block on synchronization objects, sleep, and
     84  *	resume execution at a later time.  Since software interrupts
     85  *	are a limited resource and (typically) run with higher priority
     86  *	than all other threads in the system, all block-and-resume
     87  *	activity by a software interrupt must be kept short in order to
     88  *	allow futher processing at that level to continue.  The kernel
     89  *	does not allow software interrupts to use facilities or perform
     90  *	actions that may block for a significant amount of time.  This
     91  *	means that it's not valid for a software interrupt to: sleep on
     92  *	condition variables, use the lockmgr() facility, or wait for
     93  *	resources to become available (for example, memory).
     94  *
     95  *	Software interrupts may block to await ownership of locks,
     96  *	which are typically owned only for a short perioid of time:
     97  *	mutexes and reader/writer locks.  By extension, code running in
     98  *	the bottom half of the kernel must take care to ensure that any
     99  *	lock that may be taken from a software interrupt can not be
    100  *	held for more than a short period of time.
    101  *
    102  * Per-CPU operation
    103  *
    104  *	Soft interrupts are strictly per-CPU.  If a soft interrupt is
    105  *	triggered on a CPU, it will only be dispatched on that CPU.
    106  *	Each LWP dedicated to handling a soft interrupt is bound to
    107  *	it's home CPU, so if the LWP blocks and needs to run again, it
    108  *	can only run there.  Nearly all data structures used to manage
    109  *	software interrupts are per-CPU.
    110  *
    111  *	Soft interrupts can occur many thousands of times per second.
    112  *	In light of this, the per-CPU requirement is intended to solve
    113  *	three problems:
    114  *
    115  *	1) For passing work down from a hardware interrupt handler to a
    116  *	software interrupt (for example, using a queue) spinlocks need
    117  *	not be used to guarantee data integrity.  Adjusting the CPU
    118  *	local interrupt priority level is sufficient.  Acquiring
    119  *	spinlocks is computationally expensive, as it increases traffic
    120  *	on the system bus and can stall processors with long execution
    121  *	pipelines.
    122  *
    123  *	2) Often hardware interrupt handlers manipulate data structures
    124  *	and then pass those to a software interrupt for further
    125  *	processing.  If those data structures are immediately passed to
    126  *	another CPU, the associated cache lines may be forced across
    127  *	the system bus, generating more bus traffic.
    128  *
    129  *	3) The data structures used to manage soft interrupts are also
    130  *	CPU local, again to reduce unnecessary bus traffic.
    131  *
    132  * Generic implementation
    133  *
    134  *	A generic, low performance implementation is provided that
    135  *	works across all architectures, with no machine-dependent
    136  *	modifications needed.  This implementation uses the scheduler,
    137  *	and so has a number of restrictions:
    138  *
    139  *	1) Since software interrupts can be triggered from any priority
    140  *	level, on architectures where the generic implementation is
    141  *	used IPL_SCHED must be equal to IPL_HIGH.
    142  *
    143  *	2) The software interrupts are not preemptive, and so must wait
    144  *	for the currently executing thread to yield the CPU.  This
    145  *	can introduce latency.
    146  *
    147  *	3) A context switch is required for each soft interrupt to be
    148  *	handled, which can be quite expensive.
    149  *
    150  * 'Fast' software interrupts
    151  *
    152  *	XXX
    153  *
    154  * The !__HAVE_FAST_SOFTINTS case assumes splhigh == splsched.
    155  */
    156 
    157 #include <sys/cdefs.h>
    158 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.2 2007/07/01 21:31:32 ad Exp $");
    159 
    160 #include <sys/param.h>
    161 #include <sys/malloc.h>
    162 #include <sys/proc.h>
    163 #include <sys/intr.h>
    164 #include <sys/mutex.h>
    165 #include <sys/kthread.h>
    166 #include <sys/evcnt.h>
    167 #include <sys/cpu.h>
    168 
    169 #include <net/netisr.h>
    170 
    171 #include <uvm/uvm_extern.h>
    172 
    173 #define	PRI_SOFTCLOCK	PRI_INTERRUPT
    174 #define	PRI_SOFTBIO	(PRI_INTERRUPT + 4)
    175 #define	PRI_SOFTNET	(PRI_INTERRUPT + 8)
    176 #define	PRI_SOFTSERIAL	(PRI_INTERRUPT + 12)
    177 
    178 /* This could overlap with signal info in struct lwp. */
    179 typedef struct softint {
    180 	TAILQ_HEAD(, softhand)	si_q;
    181 	struct lwp		*si_lwp;
    182 	struct cpu_info		*si_cpu;
    183 	uintptr_t		si_machdep;
    184 	struct evcnt		si_evcnt;
    185 	int			si_active;
    186 	char			si_name[8];
    187 } softint_t;
    188 
    189 typedef struct softhand {
    190 	TAILQ_ENTRY(softhand)	sh_q;
    191 	void			(*sh_func)(void *);
    192 	void			*sh_arg;
    193 	softint_t		*sh_isr;
    194 	u_int			sh_pending;
    195 	u_int			sh_flags;
    196 } softhand_t;
    197 
    198 typedef struct softcpu {
    199 	struct cpu_info		*sc_cpu;
    200 	softint_t		sc_int[SOFTINT_COUNT];
    201 	softhand_t		sc_hand[1];
    202 } softcpu_t;
    203 
    204 static void	softint_thread(void *);
    205 static void	softint_netisr(void *);
    206 
    207 u_int		softint_bytes = 8192;
    208 static u_int	softint_max;
    209 static kmutex_t	softint_lock;
    210 static void	*softint_netisr_sih;
    211 struct evcnt	softint_block;
    212 
    213 /*
    214  * softint_init_isr:
    215  *
    216  *	Initialize a single interrupt level for a single CPU.
    217  */
    218 static void
    219 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    220 {
    221 	struct cpu_info *ci;
    222 	softint_t *si;
    223 	int error;
    224 
    225 	si = &sc->sc_int[level];
    226 	ci = sc->sc_cpu;
    227 	si->si_cpu = ci;
    228 
    229 	TAILQ_INIT(&si->si_q);
    230 
    231 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    232 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    233 	    "soft%s/%d", desc, (int)ci->ci_cpuid);
    234 	if (error != 0)
    235 		panic("softint_init_isr: error %d", error);
    236 
    237 	snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
    238 	    (int)ci->ci_cpuid);
    239 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
    240 	   "softint", si->si_name);
    241 
    242 	softint_init_md(si->si_lwp, level, &si->si_machdep, si);
    243 
    244 #ifdef __HAVE_FAST_SOFTINTS
    245 	si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
    246 #endif
    247 }
    248 
    249 /*
    250  * softint_init_md:
    251  *
    252  *	Perform machine-dependent initialization.  Arguments:
    253  *
    254  *	l
    255  *
    256  *	    LWP to handle the interrupt
    257  *
    258  *	level
    259  *
    260  *	    Symbolic level: SOFTINT_*
    261  *
    262  *	machdep
    263  *
    264  *	    Private value for machine dependent code,
    265  *	    passed by MI code to softint_trigger().
    266  *
    267  *	cookie
    268  *
    269  *	    Value to be passed to softint_execute() by
    270  *	    MD code when an interrupt is being handled.
    271  */
    272 #ifndef __HAVE_FAST_SOFTINTS
    273 void
    274 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep, void *cookie)
    275 {
    276 
    277 	*machdep = (lwp_t)l;
    278 
    279 	lwp_lock(l);
    280 	/* Cheat and make the KASSERT in softint_thread() happy. */
    281 	((softint_t *)cookie)->si_active = 1;
    282 	l->l_stat = LSRUN;
    283 	sched_enqueue(l, false);
    284 	lwp_unlock(l);
    285 }
    286 #endif	/* !__HAVE_FAST_SOFTINTS */
    287 
    288 /*
    289  * softint_init:
    290  *
    291  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    292  */
    293 void
    294 softint_init(struct cpu_info *ci)
    295 {
    296 	static struct cpu_info *first;
    297 	softcpu_t *sc, *scfirst;
    298 	softhand_t *sh, *shmax;
    299 
    300 	if (first == NULL) {
    301 		/* Boot CPU. */
    302 		first = ci;
    303 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    304 		softint_bytes = round_page(softint_bytes);
    305 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    306 		    sizeof(softhand_t);
    307 		evcnt_attach_dynamic(&softint_block, EVCNT_TYPE_INTR,
    308 		    NULL, "softint", "block");
    309 	}
    310 
    311 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    312 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    313 	if (sc == NULL)
    314 		panic("softint_init_cpu: cannot allocate memory");
    315 
    316 	ci->ci_data.cpu_softcpu = sc;
    317 	sc->sc_cpu = ci;
    318 
    319 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    320 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    321 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    322 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    323 
    324 	if (first != ci) {
    325 		/* Don't lock -- autoconfiguration will prevent reentry. */
    326 		scfirst = first->ci_data.cpu_softcpu;
    327 		sh = sc->sc_hand;
    328 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    329 
    330 		/* Update pointers for this CPU. */
    331 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    332 			if (sh->sh_func == NULL)
    333 				continue;
    334 			sh->sh_isr =
    335 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    336 		}
    337 	} else {
    338 		/* Establish a handler for legacy net interrupts. */
    339 		softint_netisr_sih = softint_establish(SOFTINT_NET,
    340 		    softint_netisr, NULL);
    341 		KASSERT(softint_netisr_sih != NULL);
    342 	}
    343 }
    344 
    345 /*
    346  * softint_establish:
    347  *
    348  *	Register a software interrupt handler.
    349  */
    350 void *
    351 softint_establish(u_int flags, void (*func)(void *), void *arg)
    352 {
    353 	CPU_INFO_ITERATOR cii;
    354 	struct cpu_info *ci;
    355 	softcpu_t *sc;
    356 	softhand_t *sh;
    357 	u_int level;
    358 	u_int index;
    359 
    360 	level = (flags & SOFTINT_LVLMASK);
    361 	KASSERT(level < SOFTINT_COUNT);
    362 
    363 	mutex_enter(&softint_lock);
    364 
    365 	/* Find a free slot. */
    366 	sc = curcpu()->ci_data.cpu_softcpu;
    367 	for (index = 1; index < softint_max; index++)
    368 		if (sc->sc_hand[index].sh_func == NULL)
    369 			break;
    370 	if (index == softint_max) {
    371 		mutex_exit(&softint_lock);
    372 		printf("WARNING: softint_establish: table full, "
    373 		    "increase softint_bytes\n");
    374 		return NULL;
    375 	}
    376 
    377 	/* Set up the handler on each CPU. */
    378 	for (CPU_INFO_FOREACH(cii, ci)) {
    379 		sc = ci->ci_data.cpu_softcpu;
    380 		sh = &sc->sc_hand[index];
    381 
    382 		sh->sh_isr = &sc->sc_int[level];
    383 		sh->sh_func = func;
    384 		sh->sh_arg = arg;
    385 		sh->sh_flags = flags;
    386 		sh->sh_pending = 0;
    387 	}
    388 
    389 	mutex_exit(&softint_lock);
    390 
    391 	return (void *)index;
    392 }
    393 
    394 /*
    395  * softint_disestablish:
    396  *
    397  *	Unregister a software interrupt handler.
    398  */
    399 void
    400 softint_disestablish(void *arg)
    401 {
    402 	CPU_INFO_ITERATOR cii;
    403 	struct cpu_info *ci;
    404 	softcpu_t *sc;
    405 	softhand_t *sh;
    406 	u_int index;
    407 
    408 	index = (u_int)arg;
    409 	KASSERT(index != 0 && index < softint_max);
    410 
    411 	mutex_enter(&softint_lock);
    412 
    413 	/* Set up the handler on each CPU. */
    414 	for (CPU_INFO_FOREACH(cii, ci)) {
    415 		sc = ci->ci_data.cpu_softcpu;
    416 		sh = &sc->sc_hand[index];
    417 		KASSERT(sh->sh_func != NULL);
    418 		KASSERT(sh->sh_pending == 0);
    419 		sh->sh_func = NULL;
    420 	}
    421 
    422 	mutex_exit(&softint_lock);
    423 }
    424 
    425 /*
    426  * softint_trigger:
    427  *
    428  *	Cause a soft interrupt handler to begin executing.
    429  */
    430 #ifndef __HAVE_FAST_SOFTINTS
    431 inline void
    432 softint_trigger(uintptr_t machdep)
    433 {
    434 	struct cpu_info *ci;
    435 	lwp_t *l;
    436 
    437 	l = (lwp_t *)machdep;
    438 	ci = l->l_cpu;
    439 
    440 	spc_lock(ci);
    441 	l->l_mutex = ci->ci_schedstate.spc_mutex;
    442 	l->l_stat = LSRUN;
    443 	sched_enqueue(l, false);
    444 	cpu_need_resched(ci, 1);
    445 	spc_unlock(ci);
    446 }
    447 #endif	/* __HAVE_FAST_SOFTINTS */
    448 
    449 /*
    450  * softint_schedule:
    451  *
    452  *	Trigger a software interrupt.  Must be called from a hardware
    453  *	interrupt handler, or with preemption disabled (since we are
    454  *	using the value of curcpu()).
    455  */
    456 void
    457 softint_schedule(void *arg)
    458 {
    459 	softhand_t *sh;
    460 	softint_t *si;
    461 	u_int index;
    462 	int s;
    463 
    464 	/* Find the handler record for this CPU. */
    465 	index = (u_int)arg;
    466 	KASSERT(index != 0 && index < softint_max);
    467 	sh = &((softcpu_t *)curcpu()->ci_data.cpu_softcpu)->sc_hand[index];
    468 
    469 	/* If it's already pending there's nothing to do. */
    470 	if (sh->sh_pending)
    471 		return;
    472 
    473 	/*
    474 	 * Enqueue the handler into the LWP's pending list.
    475 	 * If the LWP is completely idle, then make it run.
    476 	 */
    477 	s = splhigh();
    478 	if (!sh->sh_pending) {
    479 		si = sh->sh_isr;
    480 		sh->sh_pending = 1;
    481 		TAILQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    482 		if (si->si_active == 0) {
    483 			si->si_active = 1;
    484 			softint_trigger(si->si_machdep);
    485 		}
    486 	}
    487 	splx(s);
    488 }
    489 
    490 /*
    491  * softint_thread:
    492  *
    493  *	MI software interrupt dispatch.  In the __HAVE_FAST_SOFTINTS
    494  *	case, the LWP is switched to without restoring any state, so
    495  *	we should not arrive here - there is a direct handoff between
    496  *	the interrupt stub and softint_execute().
    497  */
    498 void
    499 softint_thread(void *cookie)
    500 {
    501 #ifdef __HAVE_FAST_SOFTINTS
    502 	panic("softint_thread");
    503 #else	/* __HAVE_FAST_SOFTINTS */
    504 	lwp_t *l;
    505 	int s;
    506 
    507 	l = curlwp;
    508 	s = splhigh();
    509 
    510 	for (;;) {
    511 		softint_execute(cookie, s);
    512 
    513 		lwp_lock(l);
    514 		l->l_stat = LSIDL;
    515 		mi_switch(l);
    516 	}
    517 #endif	/* !__HAVE_FAST_SOFTINTS */
    518 }
    519 
    520 /*
    521  * softint_execute:
    522  *
    523  *	Invoke handlers for the specified soft interrupt.
    524  *	Must be entered at splhigh.  Will drop the priority
    525  *	to the level specified, but returns back at splhigh.
    526  */
    527 void
    528 softint_execute(void *cookie, int s)
    529 {
    530 	softint_t *si;
    531 	softhand_t *sh;
    532 	lwp_t *l, *l2;
    533 
    534 	si = cookie;
    535 	l = si->si_lwp;
    536 
    537 	KASSERT(si->si_lwp == curlwp);
    538 	KASSERT(si->si_cpu == curcpu());
    539 	KASSERT(si->si_lwp->l_wchan == NULL);
    540 	KASSERT(!TAILQ_EMPTY(&si->si_q));
    541 	KASSERT(si->si_active);
    542 
    543 	while (!TAILQ_EMPTY(&si->si_q)) {
    544 		/*
    545 		 * If any interrupted LWP has higher priority then we
    546 		 * must yield immediatley.  Note that IPL_HIGH may be
    547 		 * above IPL_SCHED, so we have to drop the interrupt
    548 		 * priority level before yielding.
    549 		 *
    550 		 * XXXAD Optimise this away.
    551 		 */
    552 		for (l2 = l->l_pinned; l2 != NULL; l2 = l2->l_pinned) {
    553 			if (lwp_eprio(l2) > l->l_priority)
    554 				break;
    555 		}
    556 		if (l2 != NULL) {
    557 			splx(s);
    558 			yield();
    559 			(void)splhigh();
    560 			continue;
    561 		}
    562 
    563 		/*
    564 		 * Pick the longest waiting handler to run.  We block
    565 		 * interrupts but do not lock in order to do this, as
    566 		 * we are protecting against the local CPU only.
    567 		 */
    568 		sh = TAILQ_FIRST(&si->si_q);
    569 		TAILQ_REMOVE(&si->si_q, sh, sh_q);
    570 		sh->sh_pending = 0;
    571 		splx(s);
    572 
    573 		/* Run the handler. */
    574 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    575 			KERNEL_LOCK(1, l);
    576 		}
    577 		(*sh->sh_func)(sh->sh_arg);
    578 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    579 			KERNEL_UNLOCK_ONE(l);
    580 		}
    581 
    582 		(void)splhigh();
    583 	}
    584 
    585 	/*
    586 	 * Unlocked, but only for statistics.
    587 	 * Should be per-CPU to prevent cache ping-pong.
    588 	 */
    589 	uvmexp.softs++;
    590 
    591 	si->si_evcnt.ev_count++;
    592 	si->si_active = 0;
    593 }
    594 
    595 /*
    596  * schednetisr:
    597  *
    598  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    599  */
    600 void
    601 schednetisr(int isr)
    602 {
    603 	int s;
    604 
    605 	s = splhigh();
    606 	curcpu()->ci_data.cpu_netisrs |= (1 << isr);
    607 	softint_schedule(softint_netisr_sih);
    608 	splx(s);
    609 }
    610 
    611 /*
    612  * softintr_netisr:
    613  *
    614  *	Dispatch legacy network interrupts.  XXX Needs to go away.
    615  */
    616 static void
    617 softint_netisr(void *cookie)
    618 {
    619 	struct cpu_info *ci;
    620 	int s, bits;
    621 
    622 	ci = curcpu();
    623 
    624 	s = splhigh();
    625 	bits = ci->ci_data.cpu_netisrs;
    626 	ci->ci_data.cpu_netisrs = 0;
    627 	splx(s);
    628 
    629 #define	DONETISR(which, func)				\
    630 	do {						\
    631 		void func(void);			\
    632 		if ((bits & (1 << which)) != 0)		\
    633 			func();				\
    634 	} while(0);
    635 #include <net/netisr_dispatch.h>
    636 #undef DONETISR
    637 }
    638