Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.1.2.7
      1 /*	$NetBSD: kern_softint.c,v 1.1.2.7 2007/07/15 22:20:28 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Generic software interrupt framework.
     41  *
     42  * Overview
     43  *
     44  *	The soft interrupt framework provides a mechanism to schedule a
     45  *	low priority callback that runs with thread context.  It allows
     46  *	for dynamic registration of software interrupts, and for fair
     47  *	queueing and prioritization of those interrupts.  The callbacks
     48  *	can be scheduled to run from nearly any point in the kernel: by
     49  *	code running with thread context, by code running from a
     50  *	hardware interrupt handler, and at any interrupt priority
     51  *	level.
     52  *
     53  * Priority levels
     54  *
     55  *	Since soft interrupt dispatch can be tied to the underlying
     56  *	architecture's interrupt dispatch code, it may be limited by
     57  *	both by the capabilities of the hardware and the capabilities
     58  *	of the interrupt dispatch code itself.  Therefore the number of
     59  *	levels is restricted to four.  In order of priority (lowest to
     60  *	highest) the levels are: clock, bio, net, serial.
     61  *
     62  *	The symbolic names are provided only as guide and in isolation
     63  *	do not have any direct connection with a particular kind of
     64  *	device activity.
     65  *
     66  *	The four priority levels map directly to scheduler priority
     67  *	levels, and where the architecture implements 'fast' software
     68  *	interrupts, they also map onto interrupt priorities.  The
     69  *	interrupt priorities are intended to be hidden from machine
     70  *	independent code, which should use multiprocessor and
     71  *	preemption aware mechanisms to synchronize with software
     72  *	interrupts (for example: mutexes).
     73  *
     74  * Capabilities
     75  *
     76  *	As with hardware interrupt handlers, software interrupts run
     77  *	with limited machine context.  In particular, they do not
     78  *	posess any VM (virtual memory) context, and should therefore
     79  *	not try to operate on user space addresses, or to use virtual
     80  *	memory facilities other than those noted as interrupt safe.
     81  *
     82  *	Unlike hardware interrupts, software interrupts do have thread
     83  *	context.  They may block on synchronization objects, sleep, and
     84  *	resume execution at a later time.  Since software interrupts
     85  *	are a limited resource and (typically) run with higher priority
     86  *	than all other threads in the system, all block-and-resume
     87  *	activity by a software interrupt must be kept short in order to
     88  *	allow futher processing at that level to continue.  The kernel
     89  *	does not allow software interrupts to use facilities or perform
     90  *	actions that may block for a significant amount of time.  This
     91  *	means that it's not valid for a software interrupt to: sleep on
     92  *	condition variables, use the lockmgr() facility, or wait for
     93  *	resources to become available (for example, memory).
     94  *
     95  *	Software interrupts may block to await ownership of locks,
     96  *	which are typically owned only for a short perioid of time:
     97  *	mutexes and reader/writer locks.  By extension, code running in
     98  *	the bottom half of the kernel must take care to ensure that any
     99  *	lock that may be taken from a software interrupt can not be
    100  *	held for more than a short period of time.
    101  *
    102  * Per-CPU operation
    103  *
    104  *	Soft interrupts are strictly per-CPU.  If a soft interrupt is
    105  *	triggered on a CPU, it will only be dispatched on that CPU.
    106  *	Each LWP dedicated to handling a soft interrupt is bound to
    107  *	it's home CPU, so if the LWP blocks and needs to run again, it
    108  *	can only run there.  Nearly all data structures used to manage
    109  *	software interrupts are per-CPU.
    110  *
    111  *	Soft interrupts can occur many thousands of times per second.
    112  *	In light of this, the per-CPU requirement is intended to solve
    113  *	three problems:
    114  *
    115  *	1) For passing work down from a hardware interrupt handler to a
    116  *	software interrupt (for example, using a queue) spinlocks need
    117  *	not be used to guarantee data integrity.  Adjusting the CPU
    118  *	local interrupt priority level is sufficient.  Acquiring
    119  *	spinlocks is computationally expensive, as it increases traffic
    120  *	on the system bus and can stall processors with long execution
    121  *	pipelines.
    122  *
    123  *	2) Often hardware interrupt handlers manipulate data structures
    124  *	and then pass those to a software interrupt for further
    125  *	processing.  If those data structures are immediately passed to
    126  *	another CPU, the associated cache lines may be forced across
    127  *	the system bus, generating more bus traffic.
    128  *
    129  *	3) The data structures used to manage soft interrupts are also
    130  *	CPU local, again to reduce unnecessary bus traffic.
    131  *
    132  * Generic implementation
    133  *
    134  *	A generic, low performance implementation is provided that
    135  *	works across all architectures, with no machine-dependent
    136  *	modifications needed.  This implementation uses the scheduler,
    137  *	and so has a number of restrictions:
    138  *
    139  *	1) Since software interrupts can be triggered from any priority
    140  *	level, on architectures where the generic implementation is
    141  *	used IPL_SCHED must be equal to IPL_HIGH.
    142  *
    143  *	2) The software interrupts are not preemptive, and so must wait
    144  *	for the currently executing thread to yield the CPU.  This
    145  *	can introduce latency.
    146  *
    147  *	3) A context switch is required for each soft interrupt to be
    148  *	handled, which can be quite expensive.
    149  *
    150  * 'Fast' software interrupts
    151  *
    152  *	XXX
    153  *
    154  * The !__HAVE_FAST_SOFTINTS case assumes splhigh == splsched.
    155  */
    156 
    157 #include <sys/cdefs.h>
    158 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.1.2.7 2007/07/15 22:20:28 ad Exp $");
    159 
    160 #include <sys/param.h>
    161 #include <sys/malloc.h>
    162 #include <sys/proc.h>
    163 #include <sys/intr.h>
    164 #include <sys/mutex.h>
    165 #include <sys/kthread.h>
    166 #include <sys/evcnt.h>
    167 #include <sys/cpu.h>
    168 
    169 #include <net/netisr.h>
    170 
    171 #include <uvm/uvm_extern.h>
    172 
    173 #define	PRI_SOFTSERIAL	(PRI_COUNT - 1)
    174 #define	PRI_SOFTNET	(PRI_SOFTSERIAL - schedppq * 1)
    175 #define	PRI_SOFTBIO	(PRI_SOFTSERIAL - schedppq * 2)
    176 #define	PRI_SOFTCLOCK	(PRI_SOFTSERIAL - schedppq * 3)
    177 
    178 /* This could overlap with signal info in struct lwp. */
    179 typedef struct softint {
    180 	TAILQ_HEAD(, softhand)	si_q;
    181 	struct lwp		*si_lwp;
    182 	struct cpu_info		*si_cpu;
    183 	uintptr_t		si_machdep;
    184 	struct evcnt		si_evcnt;
    185 	int			si_active;
    186 	char			si_name[8];
    187 } softint_t;
    188 
    189 typedef struct softhand {
    190 	TAILQ_ENTRY(softhand)	sh_q;
    191 	void			(*sh_func)(void *);
    192 	void			*sh_arg;
    193 	softint_t		*sh_isr;
    194 	u_int			sh_pending;
    195 	u_int			sh_flags;
    196 } softhand_t;
    197 
    198 typedef struct softcpu {
    199 	struct cpu_info		*sc_cpu;
    200 	softint_t		sc_int[SOFTINT_COUNT];
    201 	softhand_t		sc_hand[1];
    202 } softcpu_t;
    203 
    204 static void	softint_thread(void *);
    205 static void	softint_netisr(void *);
    206 
    207 u_int		softint_bytes = 8192;
    208 u_int		softint_timing;
    209 static u_int	softint_max;
    210 static kmutex_t	softint_lock;
    211 static void	*softint_netisr_sih;
    212 struct evcnt	softint_block;
    213 
    214 /*
    215  * softint_init_isr:
    216  *
    217  *	Initialize a single interrupt level for a single CPU.
    218  */
    219 static void
    220 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    221 {
    222 	struct cpu_info *ci;
    223 	softint_t *si;
    224 	int error;
    225 
    226 	si = &sc->sc_int[level];
    227 	ci = sc->sc_cpu;
    228 	si->si_cpu = ci;
    229 
    230 	TAILQ_INIT(&si->si_q);
    231 
    232 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    233 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    234 	    "soft%s/%d", desc, (int)ci->ci_cpuid);
    235 	if (error != 0)
    236 		panic("softint_init_isr: error %d", error);
    237 
    238 	snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
    239 	    (int)ci->ci_cpuid);
    240 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
    241 	   "softint", si->si_name);
    242 
    243 	si->si_lwp->l_private = si;
    244 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    245 #ifdef __HAVE_FAST_SOFTINTS
    246 	si->si_lwp->l_mutex = &ci->ci_schedstate.spc_lwplock;
    247 #endif
    248 }
    249 /*
    250  * softint_init:
    251  *
    252  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    253  */
    254 void
    255 softint_init(struct cpu_info *ci)
    256 {
    257 	static struct cpu_info *first;
    258 	softcpu_t *sc, *scfirst;
    259 	softhand_t *sh, *shmax;
    260 
    261 	if (first == NULL) {
    262 		/* Boot CPU. */
    263 		first = ci;
    264 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    265 		softint_bytes = round_page(softint_bytes);
    266 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    267 		    sizeof(softhand_t);
    268 		evcnt_attach_dynamic(&softint_block, EVCNT_TYPE_INTR,
    269 		    NULL, "softint", "block");
    270 	}
    271 
    272 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    273 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    274 	if (sc == NULL)
    275 		panic("softint_init_cpu: cannot allocate memory");
    276 
    277 	ci->ci_data.cpu_softcpu = sc;
    278 	sc->sc_cpu = ci;
    279 
    280 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    281 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    282 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    283 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    284 
    285 	if (first != ci) {
    286 		/* Don't lock -- autoconfiguration will prevent reentry. */
    287 		scfirst = first->ci_data.cpu_softcpu;
    288 		sh = sc->sc_hand;
    289 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    290 
    291 		/* Update pointers for this CPU. */
    292 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    293 			if (sh->sh_func == NULL)
    294 				continue;
    295 			sh->sh_isr =
    296 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    297 		}
    298 	} else {
    299 		/* Establish a handler for legacy net interrupts. */
    300 		softint_netisr_sih = softint_establish(SOFTINT_NET,
    301 		    softint_netisr, NULL);
    302 		KASSERT(softint_netisr_sih != NULL);
    303 	}
    304 }
    305 
    306 /*
    307  * softint_establish:
    308  *
    309  *	Register a software interrupt handler.
    310  */
    311 void *
    312 softint_establish(u_int flags, void (*func)(void *), void *arg)
    313 {
    314 	CPU_INFO_ITERATOR cii;
    315 	struct cpu_info *ci;
    316 	softcpu_t *sc;
    317 	softhand_t *sh;
    318 	u_int level, index;
    319 
    320 	level = (flags & SOFTINT_LVLMASK);
    321 	KASSERT(level < SOFTINT_COUNT);
    322 
    323 	mutex_enter(&softint_lock);
    324 
    325 	/* Find a free slot. */
    326 	sc = curcpu()->ci_data.cpu_softcpu;
    327 	for (index = 1; index < softint_max; index++)
    328 		if (sc->sc_hand[index].sh_func == NULL)
    329 			break;
    330 	if (index == softint_max) {
    331 		mutex_exit(&softint_lock);
    332 		printf("WARNING: softint_establish: table full, "
    333 		    "increase softint_bytes\n");
    334 		return NULL;
    335 	}
    336 
    337 	/* Set up the handler on each CPU. */
    338 	for (CPU_INFO_FOREACH(cii, ci)) {
    339 		sc = ci->ci_data.cpu_softcpu;
    340 		sh = &sc->sc_hand[index];
    341 
    342 		sh->sh_isr = &sc->sc_int[level];
    343 		sh->sh_func = func;
    344 		sh->sh_arg = arg;
    345 		sh->sh_flags = flags;
    346 		sh->sh_pending = 0;
    347 	}
    348 
    349 	mutex_exit(&softint_lock);
    350 
    351 	return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    352 }
    353 
    354 /*
    355  * softint_disestablish:
    356  *
    357  *	Unregister a software interrupt handler.
    358  */
    359 void
    360 softint_disestablish(void *arg)
    361 {
    362 	CPU_INFO_ITERATOR cii;
    363 	struct cpu_info *ci;
    364 	softcpu_t *sc;
    365 	softhand_t *sh;
    366 	uintptr_t offset;
    367 
    368 	offset = (uintptr_t)arg;
    369 	KASSERT(offset != 0 && offset < softint_bytes);
    370 
    371 	mutex_enter(&softint_lock);
    372 
    373 	/* Set up the handler on each CPU. */
    374 	for (CPU_INFO_FOREACH(cii, ci)) {
    375 		sc = ci->ci_data.cpu_softcpu;
    376 		sh = (softhand_t *)((uint8_t *)sc + offset);
    377 		KASSERT(sh->sh_func != NULL);
    378 		KASSERT(sh->sh_pending == 0);
    379 		sh->sh_func = NULL;
    380 	}
    381 
    382 	mutex_exit(&softint_lock);
    383 }
    384 
    385 /*
    386  * softint_schedule:
    387  *
    388  *	Trigger a software interrupt.  Must be called from a hardware
    389  *	interrupt handler, or with preemption disabled (since we are
    390  *	using the value of curcpu()).
    391  */
    392 void
    393 softint_schedule(void *arg)
    394 {
    395 	softhand_t *sh;
    396 	softint_t *si;
    397 	uintptr_t offset;
    398 	int s;
    399 
    400 	/* Find the handler record for this CPU. */
    401 	offset = (uintptr_t)arg;
    402 	KASSERT(offset != 0 && offset < softint_bytes);
    403 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    404 
    405 	/* If it's already pending there's nothing to do. */
    406 	if (sh->sh_pending)
    407 		return;
    408 
    409 	/*
    410 	 * Enqueue the handler into the LWP's pending list.
    411 	 * If the LWP is completely idle, then make it run.
    412 	 */
    413 	s = splhigh();
    414 	if (!sh->sh_pending) {
    415 		si = sh->sh_isr;
    416 		sh->sh_pending = 1;
    417 		TAILQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    418 		if (si->si_active == 0) {
    419 			si->si_active = 1;
    420 			softint_trigger(si->si_machdep);
    421 		}
    422 	}
    423 	splx(s);
    424 }
    425 
    426 /*
    427  * softint_execute:
    428  *
    429  *	Invoke handlers for the specified soft interrupt.
    430  *	Must be entered at splhigh.  Will drop the priority
    431  *	to the level specified, but returns back at splhigh.
    432  */
    433 static inline void
    434 softint_execute(softint_t *si, lwp_t *l, int s)
    435 {
    436 	softhand_t *sh;
    437 	lwp_t *l2;
    438 
    439 	KASSERT(si->si_lwp == curlwp);
    440 	KASSERT(si->si_cpu == curcpu());
    441 	KASSERT(si->si_lwp->l_wchan == NULL);
    442 	KASSERT(si->si_active);
    443 
    444 	while (!TAILQ_EMPTY(&si->si_q)) {
    445 		/*
    446 		 * If any interrupted LWP has higher priority then we
    447 		 * must yield immediatley.  Note that IPL_HIGH may be
    448 		 * above IPL_SCHED, so we have to drop the interrupt
    449 		 * priority level before yielding.
    450 		 *
    451 		 * XXXAD Optimise this away.
    452 		 */
    453 		for (l2 = l->l_switchto; l2 != NULL; l2 = l2->l_switchto) {
    454 			if (lwp_eprio(l2) > l->l_priority)
    455 				break;
    456 		}
    457 		if (l2 != NULL) {
    458 			splx(s);
    459 			yield();
    460 			(void)splhigh();
    461 			continue;
    462 		}
    463 
    464 		/*
    465 		 * Pick the longest waiting handler to run.  We block
    466 		 * interrupts but do not lock in order to do this, as
    467 		 * we are protecting against the local CPU only.
    468 		 */
    469 		sh = TAILQ_FIRST(&si->si_q);
    470 		TAILQ_REMOVE(&si->si_q, sh, sh_q);
    471 		sh->sh_pending = 0;
    472 		splx(s);
    473 
    474 		/* Run the handler. */
    475 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    476 			KERNEL_LOCK(1, l);
    477 		}
    478 		(*sh->sh_func)(sh->sh_arg);
    479 		if ((sh->sh_flags & SOFTINT_MPSAFE) == 0) {
    480 			KERNEL_UNLOCK_ONE(l);
    481 		}
    482 
    483 		(void)splhigh();
    484 	}
    485 
    486 	/*
    487 	 * Unlocked, but only for statistics.
    488 	 * Should be per-CPU to prevent cache ping-pong.
    489 	 */
    490 	uvmexp.softs++;
    491 
    492 	si->si_evcnt.ev_count++;
    493 	si->si_active = 0;
    494 }
    495 
    496 /*
    497  * schednetisr:
    498  *
    499  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    500  */
    501 void
    502 schednetisr(int isr)
    503 {
    504 	int s;
    505 
    506 	s = splhigh();
    507 	curcpu()->ci_data.cpu_netisrs |= (1 << isr);
    508 	softint_schedule(softint_netisr_sih);
    509 	splx(s);
    510 }
    511 
    512 /*
    513  * softintr_netisr:
    514  *
    515  *	Dispatch legacy network interrupts.  XXX Needs to go away.
    516  */
    517 static void
    518 softint_netisr(void *cookie)
    519 {
    520 	struct cpu_info *ci;
    521 	int s, bits;
    522 
    523 	ci = curcpu();
    524 
    525 	s = splhigh();
    526 	bits = ci->ci_data.cpu_netisrs;
    527 	ci->ci_data.cpu_netisrs = 0;
    528 	splx(s);
    529 
    530 #define	DONETISR(which, func)				\
    531 	do {						\
    532 		void func(void);			\
    533 		if ((bits & (1 << which)) != 0)		\
    534 			func();				\
    535 	} while(0);
    536 #include <net/netisr_dispatch.h>
    537 #undef DONETISR
    538 }
    539 
    540 #ifndef __HAVE_FAST_SOFTINTS
    541 
    542 /*
    543  * softint_init_md:
    544  *
    545  *	Perform machine-dependent initialization.
    546  */
    547 void
    548 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    549 {
    550 	softint_t *si;
    551 
    552 	*machdep = (uintptr_t)l;
    553 	si = l->l_private;
    554 
    555 	lwp_lock(l);
    556 	/* Cheat and make the KASSERT in softint_thread() happy. */
    557 	si->si_active = 1;
    558 	l->l_stat = LSRUN;
    559 	sched_enqueue(l, false);
    560 	lwp_unlock(l);
    561 }
    562 
    563 /*
    564  * softint_trigger:
    565  *
    566  *	Cause a soft interrupt handler to begin executing.
    567  */
    568 void
    569 softint_trigger(uintptr_t machdep)
    570 {
    571 	struct cpu_info *ci;
    572 	lwp_t *l;
    573 
    574 	l = (lwp_t *)machdep;
    575 	ci = l->l_cpu;
    576 
    577 	spc_lock(ci);
    578 	l->l_mutex = ci->ci_schedstate.spc_mutex;
    579 	l->l_stat = LSRUN;
    580 	sched_enqueue(l, false);
    581 	cpu_need_resched(ci, 1);
    582 	spc_unlock(ci);
    583 }
    584 
    585 /*
    586  * softint_thread:
    587  *
    588  *	Slow path MI software interrupt dispatch.
    589  */
    590 void
    591 softint_thread(void *cookie)
    592 {
    593 	softint_t *si;
    594 	lwp_t *l;
    595 	int s;
    596 
    597 	l = curlwp;
    598 	si = l->l_private;
    599 	s = splhigh();
    600 
    601 	for (;;) {
    602 		softint_execute(si, l, s);
    603 
    604 		lwp_lock(l);
    605 		l->l_stat = LSIDL;
    606 		mi_switch(l);
    607 	}
    608 }
    609 
    610 #else	/*  !__HAVE_FAST_SOFTINTS */
    611 
    612 /*
    613  * softint_thread:
    614  *
    615  *	In the __HAVE_FAST_SOFTINTS case, the LWP is switched to without
    616  *	restoring any state, so we should not arrive here - there is a
    617  *	direct handoff between the interrupt stub and softint_dispatch().
    618  */
    619 void
    620 softint_thread(void *cookie)
    621 {
    622 
    623 	panic("softint_thread");
    624 }
    625 
    626 /*
    627  * softint_dispatch:
    628  *
    629  *	Entry point from machine-dependent code.
    630  */
    631 void
    632 softint_dispatch(lwp_t *pinned, int s)
    633 {
    634 	struct timeval now;
    635 	softint_t *si;
    636 	u_int timing;
    637 	lwp_t *l;
    638 
    639 	l = curlwp;
    640 	si = l->l_private;
    641 
    642 	/*
    643 	 * Note the interrupted LWP, and mark the current LWP as running
    644 	 * before proceeding.  Although this must as a rule be done with
    645 	 * the LWP locked, at this point no external agents will want to
    646 	 * modify the interrupt LWP's state.
    647 	 */
    648 	timing = (softint_timing ? LW_TIMEINTR : 0);
    649 	l->l_switchto = pinned;
    650 	l->l_stat = LSONPROC;
    651 	l->l_flag |= (LW_RUNNING | timing);
    652 
    653 	/*
    654 	 * Dispatch the interrupt.  If softints are being timed, charge
    655 	 * for it.
    656 	 */
    657 	if (timing)
    658 		microtime(&l->l_stime);
    659 	softint_execute(si, l, s);
    660 	if (timing) {
    661 		microtime(&now);
    662 		updatertime(l, &now);
    663 		l->l_flag &= ~LW_TIMEINTR;
    664 	}
    665 
    666 	/*
    667 	 * If we blocked while handling the interrupt, the pinned LWP is
    668 	 * gone so switch to the idle LWP.  It will select a new LWP to
    669 	 * run.
    670 	 *
    671 	 * We must drop the priority level as switching at IPL_HIGH could
    672 	 * deadlock the system.  We have already set si->si_active = 0,
    673 	 * which means another interrupt at this level can be triggered.
    674 	 * That's not be a problem: we are lowering to level 's' which will
    675 	 * prevent softint_dispatch() from being reentered at level 's',
    676 	 * until the priority is finally dropped to IPL_NONE on entry to
    677 	 * the idle loop.
    678 	 */
    679 	l->l_stat = LSIDL;
    680 	if (l->l_switchto == NULL) {
    681 		splx(s);
    682 		lwp_exit_switchaway(l);
    683 		/* NOTREACHED */
    684 	}
    685 	l->l_switchto = NULL;
    686 	l->l_flag &= ~LW_RUNNING;
    687 }
    688 
    689 #endif	/* !__HAVE_FAST_SOFTINTS */
    690