kern_softint.c revision 1.16 1 /* $NetBSD: kern_softint.c,v 1.16 2008/04/24 11:38:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Generic software interrupt framework.
41 *
42 * Overview
43 *
44 * The soft interrupt framework provides a mechanism to schedule a
45 * low priority callback that runs with thread context. It allows
46 * for dynamic registration of software interrupts, and for fair
47 * queueing and prioritization of those interrupts. The callbacks
48 * can be scheduled to run from nearly any point in the kernel: by
49 * code running with thread context, by code running from a
50 * hardware interrupt handler, and at any interrupt priority
51 * level.
52 *
53 * Priority levels
54 *
55 * Since soft interrupt dispatch can be tied to the underlying
56 * architecture's interrupt dispatch code, it can be limited
57 * both by the capabilities of the hardware and the capabilities
58 * of the interrupt dispatch code itself. The number of priority
59 * levels is restricted to four. In order of priority (lowest to
60 * highest) the levels are: clock, bio, net, serial.
61 *
62 * The names are symbolic and in isolation do not have any direct
63 * connection with a particular kind of device activity: they are
64 * only meant as a guide.
65 *
66 * The four priority levels map directly to scheduler priority
67 * levels, and where the architecture implements 'fast' software
68 * interrupts, they also map onto interrupt priorities. The
69 * interrupt priorities are intended to be hidden from machine
70 * independent code, which should use thread-safe mechanisms to
71 * synchronize with software interrupts (for example: mutexes).
72 *
73 * Capabilities
74 *
75 * Software interrupts run with limited machine context. In
76 * particular, they do not posess any address space context. They
77 * should not try to operate on user space addresses, or to use
78 * virtual memory facilities other than those noted as interrupt
79 * safe.
80 *
81 * Unlike hardware interrupts, software interrupts do have thread
82 * context. They may block on synchronization objects, sleep, and
83 * resume execution at a later time.
84 *
85 * Since software interrupts are a limited resource and run with
86 * higher priority than most other LWPs in the system, all
87 * block-and-resume activity by a software interrupt must be kept
88 * short to allow futher processing at that level to continue. By
89 * extension, code running with process context must take care to
90 * ensure that any lock that may be taken from a software interrupt
91 * can not be held for more than a short period of time.
92 *
93 * The kernel does not allow software interrupts to use facilities
94 * or perform actions that may block for a significant amount of
95 * time. This means that it's not valid for a software interrupt
96 * to sleep on condition variables or wait for resources to become
97 * available (for example, memory).
98 *
99 * Per-CPU operation
100 *
101 * If a soft interrupt is triggered on a CPU, it can only be
102 * dispatched on the same CPU. Each LWP dedicated to handling a
103 * soft interrupt is bound to its home CPU, so if the LWP blocks
104 * and needs to run again, it can only run there. Nearly all data
105 * structures used to manage software interrupts are per-CPU.
106 *
107 * The per-CPU requirement is intended to reduce "ping-pong" of
108 * cache lines between CPUs: lines occupied by data structures
109 * used to manage the soft interrupts, and lines occupied by data
110 * items being passed down to the soft interrupt. As a positive
111 * side effect, this also means that the soft interrupt dispatch
112 * code does not need to to use spinlocks to synchronize.
113 *
114 * Generic implementation
115 *
116 * A generic, low performance implementation is provided that
117 * works across all architectures, with no machine-dependent
118 * modifications needed. This implementation uses the scheduler,
119 * and so has a number of restrictions:
120 *
121 * 1) The software interrupts are not currently preemptive, so
122 * must wait for the currently executing LWP to yield the CPU.
123 * This can introduce latency.
124 *
125 * 2) An expensive context switch is required for a software
126 * interrupt to be handled.
127 *
128 * 'Fast' software interrupts
129 *
130 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
131 * the fast mechanism. Threads running either in the kernel or in
132 * userspace will be interrupted, but will not be preempted. When
133 * the soft interrupt completes execution, the interrupted LWP
134 * is resumed. Interrupt dispatch code must provide the minimum
135 * level of context necessary for the soft interrupt to block and
136 * be resumed at a later time. The machine-dependent dispatch
137 * path looks something like the following:
138 *
139 * softintr()
140 * {
141 * go to IPL_HIGH if necessary for switch;
142 * save any necessary registers in a format that can be
143 * restored by cpu_switchto if the softint blocks;
144 * arrange for cpu_switchto() to restore into the
145 * trampoline function;
146 * identify LWP to handle this interrupt;
147 * switch to the LWP's stack;
148 * switch register stacks, if necessary;
149 * assign new value of curlwp;
150 * call MI softint_dispatch, passing old curlwp and IPL
151 * to execute interrupt at;
152 * switch back to old stack;
153 * switch back to old register stack, if necessary;
154 * restore curlwp;
155 * return to interrupted LWP;
156 * }
157 *
158 * If the soft interrupt blocks, a trampoline function is returned
159 * to in the context of the interrupted LWP, as arranged for by
160 * softint():
161 *
162 * softint_ret()
163 * {
164 * unlock soft interrupt LWP;
165 * resume interrupt processing, likely returning to
166 * interrupted LWP or dispatching another, different
167 * interrupt;
168 * }
169 *
170 * Once the soft interrupt has fired (and even if it has blocked),
171 * no further soft interrupts at that level will be triggered by
172 * MI code until the soft interrupt handler has ceased execution.
173 * If a soft interrupt handler blocks and is resumed, it resumes
174 * execution as a normal LWP (kthread) and gains VM context. Only
175 * when it has completed and is ready to fire again will it
176 * interrupt other threads.
177 *
178 * Future directions
179 *
180 * Provide a cheap way to direct software interrupts to remote
181 * CPUs. Provide a way to enqueue work items into the handler
182 * record, removing additional spl calls (see subr_workqueue.c).
183 */
184
185 #include <sys/cdefs.h>
186 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.16 2008/04/24 11:38:36 ad Exp $");
187
188 #include <sys/param.h>
189 #include <sys/malloc.h>
190 #include <sys/proc.h>
191 #include <sys/intr.h>
192 #include <sys/mutex.h>
193 #include <sys/kthread.h>
194 #include <sys/evcnt.h>
195 #include <sys/cpu.h>
196
197 #include <net/netisr.h>
198
199 #include <uvm/uvm_extern.h>
200
201 /* This could overlap with signal info in struct lwp. */
202 typedef struct softint {
203 SIMPLEQ_HEAD(, softhand) si_q;
204 struct lwp *si_lwp;
205 struct cpu_info *si_cpu;
206 uintptr_t si_machdep;
207 struct evcnt si_evcnt;
208 struct evcnt si_evcnt_block;
209 int si_active;
210 char si_name[8];
211 char si_name_block[8+6];
212 } softint_t;
213
214 typedef struct softhand {
215 SIMPLEQ_ENTRY(softhand) sh_q;
216 void (*sh_func)(void *);
217 void *sh_arg;
218 softint_t *sh_isr;
219 u_int sh_pending;
220 u_int sh_flags;
221 } softhand_t;
222
223 typedef struct softcpu {
224 struct cpu_info *sc_cpu;
225 softint_t sc_int[SOFTINT_COUNT];
226 softhand_t sc_hand[1];
227 } softcpu_t;
228
229 static void softint_thread(void *);
230
231 u_int softint_bytes = 8192;
232 u_int softint_timing;
233 static u_int softint_max;
234 static kmutex_t softint_lock;
235 static void *softint_netisrs[32];
236
237 /*
238 * softint_init_isr:
239 *
240 * Initialize a single interrupt level for a single CPU.
241 */
242 static void
243 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
244 {
245 struct cpu_info *ci;
246 softint_t *si;
247 int error;
248
249 si = &sc->sc_int[level];
250 ci = sc->sc_cpu;
251 si->si_cpu = ci;
252
253 SIMPLEQ_INIT(&si->si_q);
254
255 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
256 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
257 "soft%s/%u", desc, ci->ci_index);
258 if (error != 0)
259 panic("softint_init_isr: error %d", error);
260
261 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
262 ci->ci_index);
263 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
264 "softint", si->si_name);
265 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
266 desc, ci->ci_index);
267 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
268 "softint", si->si_name_block);
269
270 si->si_lwp->l_private = si;
271 softint_init_md(si->si_lwp, level, &si->si_machdep);
272 }
273 /*
274 * softint_init:
275 *
276 * Initialize per-CPU data structures. Called from mi_cpu_attach().
277 */
278 void
279 softint_init(struct cpu_info *ci)
280 {
281 static struct cpu_info *first;
282 softcpu_t *sc, *scfirst;
283 softhand_t *sh, *shmax;
284
285 if (first == NULL) {
286 /* Boot CPU. */
287 first = ci;
288 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
289 softint_bytes = round_page(softint_bytes);
290 softint_max = (softint_bytes - sizeof(softcpu_t)) /
291 sizeof(softhand_t);
292 }
293
294 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
295 UVM_KMF_WIRED | UVM_KMF_ZERO);
296 if (sc == NULL)
297 panic("softint_init_cpu: cannot allocate memory");
298
299 ci->ci_data.cpu_softcpu = sc;
300 ci->ci_data.cpu_softints = 0;
301 sc->sc_cpu = ci;
302
303 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
304 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
305 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
306 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
307
308 if (first != ci) {
309 mutex_enter(&softint_lock);
310 scfirst = first->ci_data.cpu_softcpu;
311 sh = sc->sc_hand;
312 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
313 /* Update pointers for this CPU. */
314 for (shmax = sh + softint_max; sh < shmax; sh++) {
315 if (sh->sh_func == NULL)
316 continue;
317 sh->sh_isr =
318 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
319 }
320 mutex_exit(&softint_lock);
321 } else {
322 /*
323 * Establish handlers for legacy net interrupts.
324 * XXX Needs to go away.
325 */
326 #define DONETISR(n, f) \
327 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
328 (void (*)(void *))(f), NULL)
329 #include <net/netisr_dispatch.h>
330 }
331 }
332
333 /*
334 * softint_establish:
335 *
336 * Register a software interrupt handler.
337 */
338 void *
339 softint_establish(u_int flags, void (*func)(void *), void *arg)
340 {
341 CPU_INFO_ITERATOR cii;
342 struct cpu_info *ci;
343 softcpu_t *sc;
344 softhand_t *sh;
345 u_int level, index;
346
347 level = (flags & SOFTINT_LVLMASK);
348 KASSERT(level < SOFTINT_COUNT);
349
350 mutex_enter(&softint_lock);
351
352 /* Find a free slot. */
353 sc = curcpu()->ci_data.cpu_softcpu;
354 for (index = 1; index < softint_max; index++)
355 if (sc->sc_hand[index].sh_func == NULL)
356 break;
357 if (index == softint_max) {
358 mutex_exit(&softint_lock);
359 printf("WARNING: softint_establish: table full, "
360 "increase softint_bytes\n");
361 return NULL;
362 }
363
364 /* Set up the handler on each CPU. */
365 if (ncpu < 2) {
366 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
367 sc = curcpu()->ci_data.cpu_softcpu;
368 sh = &sc->sc_hand[index];
369 sh->sh_isr = &sc->sc_int[level];
370 sh->sh_func = func;
371 sh->sh_arg = arg;
372 sh->sh_flags = flags;
373 sh->sh_pending = 0;
374 } else for (CPU_INFO_FOREACH(cii, ci)) {
375 sc = ci->ci_data.cpu_softcpu;
376 sh = &sc->sc_hand[index];
377 sh->sh_isr = &sc->sc_int[level];
378 sh->sh_func = func;
379 sh->sh_arg = arg;
380 sh->sh_flags = flags;
381 sh->sh_pending = 0;
382 }
383
384 mutex_exit(&softint_lock);
385
386 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
387 }
388
389 /*
390 * softint_disestablish:
391 *
392 * Unregister a software interrupt handler.
393 */
394 void
395 softint_disestablish(void *arg)
396 {
397 CPU_INFO_ITERATOR cii;
398 struct cpu_info *ci;
399 softcpu_t *sc;
400 softhand_t *sh;
401 uintptr_t offset;
402
403 offset = (uintptr_t)arg;
404 KASSERT(offset != 0 && offset < softint_bytes);
405
406 mutex_enter(&softint_lock);
407
408 /* Clear the handler on each CPU. */
409 for (CPU_INFO_FOREACH(cii, ci)) {
410 sc = ci->ci_data.cpu_softcpu;
411 sh = (softhand_t *)((uint8_t *)sc + offset);
412 KASSERT(sh->sh_func != NULL);
413 KASSERT(sh->sh_pending == 0);
414 sh->sh_func = NULL;
415 }
416
417 mutex_exit(&softint_lock);
418 }
419
420 /*
421 * softint_schedule:
422 *
423 * Trigger a software interrupt. Must be called from a hardware
424 * interrupt handler, or with preemption disabled (since we are
425 * using the value of curcpu()).
426 */
427 void
428 softint_schedule(void *arg)
429 {
430 softhand_t *sh;
431 softint_t *si;
432 uintptr_t offset;
433 int s;
434
435 /* Find the handler record for this CPU. */
436 offset = (uintptr_t)arg;
437 KASSERT(offset != 0 && offset < softint_bytes);
438 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
439
440 /* If it's already pending there's nothing to do. */
441 if (sh->sh_pending)
442 return;
443
444 /*
445 * Enqueue the handler into the LWP's pending list.
446 * If the LWP is completely idle, then make it run.
447 */
448 s = splhigh();
449 if (!sh->sh_pending) {
450 si = sh->sh_isr;
451 sh->sh_pending = 1;
452 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
453 if (si->si_active == 0) {
454 si->si_active = 1;
455 softint_trigger(si->si_machdep);
456 }
457 }
458 splx(s);
459 }
460
461 /*
462 * softint_execute:
463 *
464 * Invoke handlers for the specified soft interrupt.
465 * Must be entered at splhigh. Will drop the priority
466 * to the level specified, but returns back at splhigh.
467 */
468 static inline void
469 softint_execute(softint_t *si, lwp_t *l, int s)
470 {
471 softhand_t *sh;
472 bool havelock;
473
474 #ifdef __HAVE_FAST_SOFTINTS
475 KASSERT(si->si_lwp == curlwp);
476 #else
477 /* May be running in user context. */
478 #endif
479 KASSERT(si->si_cpu == curcpu());
480 KASSERT(si->si_lwp->l_wchan == NULL);
481 KASSERT(si->si_active);
482
483 havelock = false;
484
485 /*
486 * Note: due to priority inheritance we may have interrupted a
487 * higher priority LWP. Since the soft interrupt must be quick
488 * and is non-preemptable, we don't bother yielding.
489 */
490
491 while (!SIMPLEQ_EMPTY(&si->si_q)) {
492 /*
493 * Pick the longest waiting handler to run. We block
494 * interrupts but do not lock in order to do this, as
495 * we are protecting against the local CPU only.
496 */
497 sh = SIMPLEQ_FIRST(&si->si_q);
498 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
499 sh->sh_pending = 0;
500 splx(s);
501
502 /* Run the handler. */
503 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
504 KERNEL_LOCK(1, l);
505 havelock = true;
506 }
507 (*sh->sh_func)(sh->sh_arg);
508
509 (void)splhigh();
510 }
511
512 if (havelock) {
513 KERNEL_UNLOCK_ONE(l);
514 }
515
516 /*
517 * Unlocked, but only for statistics.
518 * Should be per-CPU to prevent cache ping-pong.
519 */
520 uvmexp.softs++;
521
522 KASSERT(si->si_cpu == curcpu());
523 KASSERT(si->si_lwp->l_wchan == NULL);
524 KASSERT(si->si_active);
525 si->si_evcnt.ev_count++;
526 si->si_active = 0;
527 }
528
529 /*
530 * softint_block:
531 *
532 * Update statistics when the soft interrupt blocks.
533 */
534 void
535 softint_block(lwp_t *l)
536 {
537 softint_t *si = l->l_private;
538
539 KASSERT((l->l_pflag & LP_INTR) != 0);
540 si->si_evcnt_block.ev_count++;
541 }
542
543 /*
544 * schednetisr:
545 *
546 * Trigger a legacy network interrupt. XXX Needs to go away.
547 */
548 void
549 schednetisr(int isr)
550 {
551
552 softint_schedule(softint_netisrs[isr]);
553 }
554
555 #ifndef __HAVE_FAST_SOFTINTS
556
557 /*
558 * softint_init_md:
559 *
560 * Slow path: perform machine-dependent initialization.
561 */
562 void
563 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
564 {
565 softint_t *si;
566
567 *machdep = (1 << level);
568 si = l->l_private;
569
570 lwp_lock(l);
571 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
572 lwp_lock(l);
573 /* Cheat and make the KASSERT in softint_thread() happy. */
574 si->si_active = 1;
575 l->l_stat = LSRUN;
576 sched_enqueue(l, false);
577 lwp_unlock(l);
578 }
579
580 /*
581 * softint_trigger:
582 *
583 * Slow path: cause a soft interrupt handler to begin executing.
584 * Called at IPL_HIGH.
585 */
586 void
587 softint_trigger(uintptr_t machdep)
588 {
589 struct cpu_info *ci;
590 lwp_t *l;
591
592 l = curlwp;
593 ci = l->l_cpu;
594 ci->ci_data.cpu_softints |= machdep;
595 if (l == ci->ci_data.cpu_idlelwp) {
596 cpu_need_resched(ci, 0);
597 } else {
598 /* MI equivalent of aston() */
599 cpu_signotify(l);
600 }
601 }
602
603 /*
604 * softint_thread:
605 *
606 * Slow path: MI software interrupt dispatch.
607 */
608 void
609 softint_thread(void *cookie)
610 {
611 softint_t *si;
612 lwp_t *l;
613 int s;
614
615 l = curlwp;
616 si = l->l_private;
617
618 for (;;) {
619 /*
620 * Clear pending status and run it. We must drop the
621 * spl before mi_switch(), since IPL_HIGH may be higher
622 * than IPL_SCHED (and it is not safe to switch at a
623 * higher level).
624 */
625 s = splhigh();
626 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
627 softint_execute(si, l, s);
628 splx(s);
629
630 lwp_lock(l);
631 l->l_stat = LSIDL;
632 mi_switch(l);
633 }
634 }
635
636 /*
637 * softint_picklwp:
638 *
639 * Slow path: called from mi_switch() to pick the highest priority
640 * soft interrupt LWP that needs to run.
641 */
642 lwp_t *
643 softint_picklwp(void)
644 {
645 struct cpu_info *ci;
646 u_int mask;
647 softint_t *si;
648 lwp_t *l;
649
650 ci = curcpu();
651 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
652 mask = ci->ci_data.cpu_softints;
653
654 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
655 l = si[SOFTINT_SERIAL].si_lwp;
656 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
657 l = si[SOFTINT_NET].si_lwp;
658 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
659 l = si[SOFTINT_BIO].si_lwp;
660 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
661 l = si[SOFTINT_CLOCK].si_lwp;
662 } else {
663 panic("softint_picklwp");
664 }
665
666 return l;
667 }
668
669 /*
670 * softint_overlay:
671 *
672 * Slow path: called from lwp_userret() to run a soft interrupt
673 * within the context of a user thread.
674 */
675 void
676 softint_overlay(void)
677 {
678 struct cpu_info *ci;
679 u_int softints, oflag;
680 softint_t *si;
681 pri_t obase;
682 lwp_t *l;
683 int s;
684
685 l = curlwp;
686 ci = l->l_cpu;
687 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
688
689 KASSERT((l->l_pflag & LP_INTR) == 0);
690
691 /* Arrange to elevate priority if the LWP blocks. */
692 s = splhigh();
693 obase = l->l_kpribase;
694 l->l_kpribase = PRI_KERNEL_RT;
695 oflag = l->l_pflag;
696 l->l_pflag = oflag | LP_INTR | LP_BOUND;
697 while ((softints = ci->ci_data.cpu_softints) != 0) {
698 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
699 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
700 softint_execute(&si[SOFTINT_SERIAL], l, s);
701 continue;
702 }
703 if ((softints & (1 << SOFTINT_NET)) != 0) {
704 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
705 softint_execute(&si[SOFTINT_NET], l, s);
706 continue;
707 }
708 if ((softints & (1 << SOFTINT_BIO)) != 0) {
709 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
710 softint_execute(&si[SOFTINT_BIO], l, s);
711 continue;
712 }
713 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
714 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
715 softint_execute(&si[SOFTINT_CLOCK], l, s);
716 continue;
717 }
718 }
719 l->l_pflag = oflag;
720 l->l_kpribase = obase;
721 splx(s);
722 }
723
724 #else /* !__HAVE_FAST_SOFTINTS */
725
726 /*
727 * softint_thread:
728 *
729 * Fast path: the LWP is switched to without restoring any state,
730 * so we should not arrive here - there is a direct handoff between
731 * the interrupt stub and softint_dispatch().
732 */
733 void
734 softint_thread(void *cookie)
735 {
736
737 panic("softint_thread");
738 }
739
740 /*
741 * softint_dispatch:
742 *
743 * Fast path: entry point from machine-dependent code.
744 */
745 void
746 softint_dispatch(lwp_t *pinned, int s)
747 {
748 struct bintime now;
749 softint_t *si;
750 u_int timing;
751 lwp_t *l;
752
753 l = curlwp;
754 si = l->l_private;
755
756 /*
757 * Note the interrupted LWP, and mark the current LWP as running
758 * before proceeding. Although this must as a rule be done with
759 * the LWP locked, at this point no external agents will want to
760 * modify the interrupt LWP's state.
761 */
762 timing = (softint_timing ? LW_TIMEINTR : 0);
763 l->l_switchto = pinned;
764 l->l_stat = LSONPROC;
765 l->l_flag |= (LW_RUNNING | timing);
766
767 /*
768 * Dispatch the interrupt. If softints are being timed, charge
769 * for it.
770 */
771 if (timing)
772 binuptime(&l->l_stime);
773 softint_execute(si, l, s);
774 if (timing) {
775 binuptime(&now);
776 updatertime(l, &now);
777 l->l_flag &= ~LW_TIMEINTR;
778 }
779
780 /*
781 * If we blocked while handling the interrupt, the pinned LWP is
782 * gone so switch to the idle LWP. It will select a new LWP to
783 * run.
784 *
785 * We must drop the priority level as switching at IPL_HIGH could
786 * deadlock the system. We have already set si->si_active = 0,
787 * which means another interrupt at this level can be triggered.
788 * That's not be a problem: we are lowering to level 's' which will
789 * prevent softint_dispatch() from being reentered at level 's',
790 * until the priority is finally dropped to IPL_NONE on entry to
791 * the idle loop.
792 */
793 l->l_stat = LSIDL;
794 if (l->l_switchto == NULL) {
795 splx(s);
796 pmap_deactivate(l);
797 lwp_exit_switchaway(l);
798 /* NOTREACHED */
799 }
800 l->l_switchto = NULL;
801 l->l_flag &= ~LW_RUNNING;
802 }
803
804 #endif /* !__HAVE_FAST_SOFTINTS */
805